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Abstract— Kidney stones significantly impact healthcare sys-
tems, with diagnosis typically requiring time-consuming Com-
puted Tomography (CT) scan consultations between physicians
and radiologists, often delaying patient care. Achieving a quick
and accurate diagnosis is essential to ensure timely and effective
treatment, which has motivated the development of Deep
Neural Network (DNN)-based approaches for automated kidney
stone detection. However, building effective models remains
challenging, as it often requires access to large and diverse
datasets that are siloed across institutions, and sharing such
medical data is rarely feasible due to strict privacy regulations
and patient confidentiality concerns. This paper proposes a
privacy-preserving Federated Learning (FL) framework that
enables multiple medical institutions to collaboratively train
a DNN model without sharing sensitive patient data. Each
institution trains a local model on its private dataset, and a
centralized trusted server securely aggregates model param-
eters. We evaluate our approach using abdominal CT scan
image datasets from two distinct institutions. Experimental
results demonstrate that our proposed model achieves high
classification accuracy within the same training environment,
with an Fl-score of up to 0.94. In addition, in cross-dataset
evaluations, our approach outperforms traditional centralized
baselines, showing significantly lower performance degradation
while preserving patient privacy.

I. INTRODUCTION

The growing digitization of healthcare has resulted in the
widespread availability of medical imaging data, driving the
development of Machine Learning (ML) models to assist in
diagnostics and treatment planning [1]. Among various med-
ical challenges, automatically classifying kidney stones using
Computed Tomography (CT) images is critical for guiding
appropriate treatment strategies [2], specially in emergency
room scenarios. In this direction, an ML model can be
trained to detect kidney stones by learning patterns from
annotated medical images, such as CT scans, where experts
previously label the presence and characteristics of stones.
During training, the model adjusts its internal parameters to
accurately distinguish between images with and without kid-
ney stones, enabling automated detection considering unseen
data. Despite the promise of ML solutions in improving diag-
nostic accuracy, their implementation often requires sensitive
patient data across multiple medical institutions. Such a need
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raises significant concerns regarding privacy, data protection,
and compliance with legal frameworks such as the General
Data Protection Regulation (GDPR) and the Health Insurance
Portability and Accountability Act (HIPAA) [3].

Recent works have demonstrated the effectiveness of
Deep Neural Network (DNN) techniques for classifying and
diagnosing diseases using medical images [4]. In general,
proposed schemes use a centralized learning strategy, aggre-
gating data from multiple sources into a single repository for
model training, yielding significantly high detection accura-
cies [S]. However, despite their success, these approaches
rely on the centralization of data, which is often impractical
in real-world clinical settings due to privacy, legal, and lo-
gistical constraints [6]. Sharing sensitive medical data across
institutions can expose patients to privacy breaches, introduce
risks of data misuse, and lead to compliance violations
with strict regulatory frameworks [7]. Additionally, technical
challenges related to data standardization, interoperability,
and the secure transfer of large volumes of data further
complicate the centralized model training in healthcare en-
vironments.

Federated Learning (FL) has emerged as a promising
paradigm to address these challenges [8]. In practice, it en-
ables the collaborative training of ML models across multiple
decentralized devices or institutions without requiring the
exchange of raw data. Instead, only model updates, such as
gradients or parameters, are shared, thereby preserving data
locality and protecting sensitive information. In the field of
medical imaging, FL has been successfully applied to a range
of tasks, including brain tumor segmentation [9], histopatho-
logical cancer detection [10], and autism spectrum disorder
(ASD) identification [11]. These studies often demonstrate
that collaborative learning across institutions can produce
models with performance comparable to or exceeding that
of traditional centralized approaches. Additionally, FL offers
further advantages, such as mitigating data silos, improving
model generalization by leveraging heterogeneous datasets,
and facilitating compliance with stringent data protection
regulations.

Unfortunately, despite the progress in applying FL to
various medical imaging tasks, its application to kidney
stone detection remains largely unexplored. Kidney stone
classification presents unique challenges, particularly due to
the variability in imaging conditions across different clinical
environments [12]. Overcoming domain shifts caused by
variations in image acquisition protocols, patient populations,
and equipment remains a significant challenge for maintain-



ing consistent model performance. Surprisingly, proposed
schemes often overlook domain shifts and assume the use
of a single dataset with consistent data collection charac-
teristics [13]. Notwithstanding, when multiple datasets are
involved, the privacy challenge of sharing sensitive data
across institutions or devices is frequently ignored.
Contribution. In light of this, we propose a novel application
of FL to kidney stone classification using CT images. The
proposed approach is implemented in two stages. First,
each participating institution builds its local model using
its private dataset without sharing the raw data externally.
This decentralized training process allows institutions to
leverage their sensitive medical data to build effective models
while maintaining complete control over data privacy and
security. Second, local models are aggregated to construct
a global model that captures shared knowledge in a cross-
domain setting. This design allows us to assess whether FL
can achieve performance comparable to centralized learning
methods while adhering to strict data protection and privacy
regulations. Our central insight is to model kidney stone
detection as an FL task, enabling collaborative training
across multiple medical institutions while preserving patient
privacy.

In summary, the main contributions of this work are as
follows:

« We propose a framework for applying FL to the kidney
stone classification problem, tailored to the healthcare
context with privacy preservation as a central require-
ment;

« We design and conduct a comprehensive experimental
evaluation comparing FL with centralized and indi-
vidual clinic-specific models, analyzing classification
performance and system scalability;

o We identify practical challenges, opportunities, and
best practices for deploying FL in real-world medical
settings, contributing with insights for researchers and
practitioners interested in privacy-aware Al for health-
care.

II. PRELIMINARIES
A. ML for Kidney Stone Detection

Machine Learning (ML), particularly Deep Neural Net-
works (DNNs), has been successfully applied to detect
kidney stones from CT images. Early approaches based
on handcrafted features [14] have mainly been replaced
by deep learning models capable of learning rich visual
representations directly from data [5], [15]. Architectures
such as ResNet, VGG, and InceptionV3 have achieved high
classification accuracy, often exceeding 95% in controlled
environments [5], [16]. However, despite these advances in
representation learning, significant challenges remain, partic-
ularly in ensuring generalization across data from different
CT machines and institutions. The limited availability of
annotated images that reflect the full spectrum of variability
in imaging protocols, patient populations, and equipment
settings restricts model robustness in real-world applications.

B. The challenges of ML for healthcare

As mentioned before, despite significant progress, the ap-
plication of ML in healthcare faces major challenges. Privacy
regulations such as HIPAA and GDPR restrict data sharing,
making centralized training strategies impractical in many
clinical scenarios [3], [7]. Moreover, variations in imaging
protocols, CT equipment, and patient demographics across
institutions introduce domain shifts that limit model general-
ization. These factors hinder the development of robust, scal-
able models using traditional approaches. Federated Learning
(FL) has emerged as a promising alternative, enabling collab-
orative model training without exposing sensitive data [17],
[9]. Shortly, FL may also pave the way for multimodal and
multiview solutions, requiring extensive and diverse datasets
from multiple sources to model complex diagnostic patterns
across institutions while preserving privacy.

III. RELATED WORKS

Recent advances in deep learning (DL) have significantly
enhanced the automatic detection and classification of kidney
stones using computed tomography (CT) images. Central-
ized approaches leveraging Convolutional Neural Networks
(CNNs) and transfer learning techniques have reported im-
pressive results in various studies. For instance, in [15],
the authors developed fine-tuned models based on VGG16,
ResNet50, Alexnet, and InceptionV3, achieving classification
accuracies up to 99.96% through extensive preprocessing and
hyperparameter optimization. Similarly, Yildirim et al. [5]
proposed a deep learning model using coronal CT images
and the XResNet-50 architecture, reporting an accuracy of
96.82% and F1-score of 0.97. Their publicly available dataset
has further supported reproducibility and benchmarking in
the field. Other efforts, such as those of [16], have proposed
hybrid models combining ResNetl101 with custom CNNs,
achieving near-perfect classification across multiple kidney
abnormalities, including stones, cysts, and tumors.

Despite the effectiveness of these centralized methods,
their deployment in real-world clinical environments presents
notable challenges. Medical imaging datasets are typically
siloed across institutions with varying imaging protocols,
scanner types, and data quality. Additionally, privacy reg-
ulations restrict the centralized aggregation of patient data.
These factors hinder the generalizability of models trained
on homogeneous datasets and reduce their performance in
multi-institutional or real-time clinical settings. For instance,
the authors in [18] found substantial drops in model accuracy
when testing across different CT planes, with performance
in testing scenarios dropping as low as 63% despite high
training accuracies above 98%. To address these limitations,
recent research has explored federated learning (FL) as a de-
centralized alternative. FL enables the collaborative training
of models across multiple institutions without sharing raw
data, thus preserving patient privacy while enhancing model
generalizability.

In this direction, the work in [19] describes a feder-
ated transfer learning framework tailored to kidney disorder
detection. Their approach allows geographically distributed
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Fig. 1: Proposed privacy-preserving federated learning for kidney stone detection in medical imaging. Each participating institution trains a local model
using its private data. A centralized and trusted server then aggregates these locally trained models to construct a global model. .

healthcare centers to train diagnostic models while retaining
local data jointly, thus overcoming the constraints of central-
ized learning architectures [20]. Combining FL with transfer
learning ensures that domain-specific knowledge from pre-
trained models is adapted efficiently to local data distribu-
tions, improving accuracy while respecting data governance
regulations. In summary, while centralized deep learning
models have demonstrated high classification performance
in controlled environments, federated learning provides a
promising path forward for deploying Al in heterogeneous
and privacy-sensitive healthcare ecosystems.

IV. PRIVACY-PRESERVING FEDERATED LEARNING FOR
KIDNEY STONE DETECTION IN MEDICAL IMAGING

To address the aforementioned challenges of preserving
privacy in kidney stone detection from medical images, our
proposed model formulates the task within an FL framework.
Figure 1 shows the implementation strategy of our proposed
scheme, which is implemented in two phases.

First, we frame kidney stone detection as a DNN-based
image classification task, utilizing CT images to assess the
presence of kidney stones. In our approach, a DNN model is
trained to learn complex visual features from these images,
enabling the automatic identification of kidney stones. This
supports clinicians by providing an objective diagnostic tool
to enhance accuracy, reduce workload, and facilitate timely
treatment decisions.

Second, we implement the classification task within a
FL framework to ensure the feasibility of deploying such
a model in real-world clinical environments. In this decen-
tralized setting, each participating institution independently
trains a local model on its own private CT image datasets. As
a result, instead of sharing sensitive patient data, only model
parameters or gradients are transmitted to a centralized and
trusted server, which aggregates them to construct a globally
shared model. This strategy not only preserves data privacy
but also enables collaboration across institutions that may
have heterogeneous data characteristics, such as variations
in imaging protocols, equipment, and patient demographics.
Moreover, it facilitates cross-dataset implementation by al-
lowing models to learn from distributed data sources without
requiring direct access. Our proposal ensures compliance
with data protection regulations by framing kidney stone
detection as a federated task.

The next subsections further describe the implementation
of our scheme, including the modules that implement it.

A. Image-based Detection of Kidney Stones

Our proposed model frames kidney stone detection as an
image-based classification approach for leveraging a DNN
architecture. The system is trained on a dataset of CT
scans acquired from multiple patients, enabling the model
to learn adequate representations of kidney stone characteris-
tics. Through this process, the model is able to automatically
extract and distinguish relevant visual features associated
with the presence of kidney stones, facilitating accurate
classification. Model training is conducted in a supervised
manner, where a classification loss function is minimized
using backpropagation and stochastic gradient descent. This
optimization process allows the model to iteratively refine its
parameters, enhancing its ability to generalize across varying
image conditions and patient profiles. Once trained, the DNN
can effectively analyze previously unseen CT images and
infer the presence of kidney stones based on the learned
feature space.

B. FL for Kidney Stone Detection

To enhance both the generalization capabilities and
achieve privacy-preserving implementation of our image-
based kidney stone detection model, we frame it as an
FL task. The goal is to enable multiple institutions to
collaboratively train the model without sharing raw patient
data, thus preserving data privacy and adhering to regulatory
requirements. Each institution independently trains a local
version of the model on its own CT image dataset, and
only model updates are exchanged with a central server for
aggregation (Fig. 1). This setup allows the global model to
learn from diverse data distributions, achieving cross-dataset
performance.

The model training procedure operates following a tradi-
tional FL scheme. Given a kidney stone detection function
f(z) : © — y that outputs the identified label y given an
input image x (see Section IV-A). The FL scheme finds
an aggregated model wg, such that wg is built based on
the training data {D;,Ds, ..., Dy}, where D; denotes the
private training dataset from institution I;, and N represents
the number of institutions (such as hospitals).

To achieve such a goal, our scheme is implemented
through a four-phase process, namely [Initialization, Distri-
bution, Local Training, and Aggregation.

1) Initialization. The central server initializes a global

classification model wg, where t denotes the execution
round;



2) Distribution. At every communication round ¢, such
that 0 < ¢t < T, where T denotes the upper limit of
communication rounds, the central server distributes
the global model wf to a selected number m of
institutions such that 0 < m < N, where N denotes
the total number of participant institutions;

3) Local Training. Each previously selected institution
I; conducts the local training of the received global
model w§, based on their private training data D;,
compounding a local model w;

4) Aggregation. The central server collects the local mod-
els from each selected institution to conduct the model
aggregation task that compounds a new global model
thH. The model aggregation task is a function that
aggregates a series of models into a single counter-
part, e.g., through the Average Federated Learning
(FedAVG) function, implemented based on the follow-
ing equation:

wh! = Dlimo Wi (1)
m
where m denotes the number of selected peers. There-
fore, the FedAVG builds the new global model thH by
computing the average of each local model w! weights.
Finally, if the execution round ¢ 4 1 reaches the upper
limit of rounds 7', the training is terminated; otherwise,
a new Distribution phase occurs.

As a result, the FL-based kidney stone detection procedure
enables the development of an ML model that is both
cross-dataset and privacy-preserving. This is accomplished
by training the model locally on each institution’s dataset,
capturing diverse data distributions, while only sharing
model parameters for aggregation. In doing so, the approach
maintains data privacy and leverages the heterogeneity of
multiple datasets to enhance generalization across clinical
environments.

V. EVALUATION

Our conducted experiments aim at answering the following
Research Questions (RQs):

e RQI - How well do traditional DNN-based approaches
perform in cross-dataset kidney stone classification?

e RQ?2 - Can our proposed scheme maintain high perfor-
mance across different datasets?

The next subsections further evaluate the performance of
our scheme, including the model-building procedure.

A. Model Building

The proposed model was evaluated considering a binary
classification task between having stone and not having stone
classes. To achieve such a goal, the system receives as input
the individual’s associated cross-sectional CT image and
applies the previously trained DNN model (see Section I'V-
A). We consider a scenario with 2 institutions, each with an
associated private dataset as follows:

o Institution 1. Holds a dataset with 1, 799 cross-sectional
CT images extracted from 433 subjects, as available in
K. Yildirim [5];

o Institution 2. Holds a dataset with 1, 027 cross-sectional
CT images extracted from unique individuals, as avail-
able in M. N. Islam [21];

Figure 2 overviews a sample of each institution’s cross-
sectional CT images. We split the original dataset from each
institution into training, testing, and validation datasets, each
composed by 40%, 30%, and 30% respectively of each be-
havior. This split is performed considering the distribution for
each class to preserve the distribution of kidney stones across
all subsets. The training set is used to optimize the model
parameters, the validation set guides hyperparameter tuning,
and the festing set is reserved exclusively for evaluating the
final model’s performance.

We implemented our proposal prototype (see Fig. 1) on
top of Flower API v.1.18.0 [22]. Our proposed image-based
detection of kidney stones was implemented through an
XResNet-50 DNN architecture, following a similar proce-
dure from K. Yildirim [5]. The architecture was trained for
100 epochs with binary cross entropy as loss function, and its
learning rate was set empirically according to the resulting
loss and a momentum weight of 0.9. The architecture was
implemented through pytorch API v.2.7.0 on top of Flower.

For the evaluation of our proposed FL scheme, we con-
sidered the evaluation with two institutions (see Fig. 1).
Here, each institution is implemented as a separate peer with
its corresponding dataset. Each peer is equipped with a 8-
core Intel ¢7 CPU, 32 GB of memory, and an Nvidia Tesla
T4 GPU running on Ubuntu Linux 22.04. The centralized
server also executes the same previously described hardware,
but in a separate machine. The upload of local models and
the download of their aggregated counterparts are conducted
through a network running on a Gigabit interface.

We evaluate the performance of our scheme using the
following classification performance metrics:

o True Positive (TP): number of kidney stone images

correctly classified as kidney stone.

e True Negative (TN): number of normal samples cor-

rectly classified as normal.

o False Positive (FP): number of normal samples incor-

rectly classified as kidney stone.

e False Negative (FN): number of kidney stone images

incorrectly classified as normal.

Further, we measure the F-Measure according to the har-
monic mean of precision and recall values while considering
kidney stone samples as positive and normal samples as
negative, as shown in Eq. 4.

TP
P ) ) = - 2
recision TP+ FP )
TP
= — 3
Recall TP+ F 3)

Precision - Recall
F-M =9 4
casure % Precision + Recall @)




(a) Kidney Stone (Institution 1) (b) Kidney Stone (Institution 2)

(¢) Normal (Institution 1) (d) Normal (Institution 2)

Fig. 2: Sample cross-sectional CT images from each institution. The system is designed as a binary classification task.

TABLE I: Accuracy performance of selected kidney stone detection tech-
niques. Our proposed model achieves high accuracies on a cross-dataset
setting.

Evaluation Environment
Training Institution 1 Institution 2
Scheme Env. TP TN F1 TP TN F1
Trad. Inst. 1 098 | 095 | 0.96 | 0.56 | 0.78 | 0.70
Inst. 2 0.46 [ 00.0 | 0.62 | 1.00 | 1.00 | 1.00
Ours Federated | 0.96 | 0.93 | 0.94 | 0.80 | 0.85 | 0.83

B. Kidney Stone Detection

Our first experiment aims at answering RQIl, and in-
vestigates the classification performance of traditional (cen-
tralized) image-based detection of kidney stone images. To
achieve such a goal, we train the DNN model using a
centralized dataset of CT images collected from a single
institution. The resulting model is evaluated on in- and out-
of-domain datasets to assess its generalization ability beyond
the training distribution. This experiment establishes a per-
formance baseline and highlights the challenges of deploying
traditional DNN-based approaches in heterogeneous, real-
world clinical environments.

Table I shows the accuracy performance of the traditional
centralized approach according to the training environment
vs. the evaluation environment. In summary, the model can
achieve high accuracy when trained and evaluated within
the same institutional dataset. For example, the traditional
model trained on Institution 1 provides an Fl-score of 0.96
when evaluated on the same environment, demonstrating
its effectiveness under consistent data conditions. However,
when applied to CT images from a different institution, the
F1-score drops to 0.70, indicating a substantial degradation
in classification performance. This performance gap indicates
that the model cannot operate effectively in cross-dataset
scenarios. This limitation arises from domain shifts intro-
duced by variations in imaging protocols, equipment settings,
and patient demographics across different institutions. This
leads to significant changes in the distribution and visual
characteristics of the CT images.

To answer RQ2, we investigate the accuracy performance
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Fig. 3: ROC curve and loss of our proposed FL strategy for kidney stone
detection.

of our model when operating in a cross-dataset setting. To
achieve such a goal, we build the model under an FL setup
where each participating institution retains its associated
dataset locally, simulating a realistic distributed medical
environment. In practice, we consider a scenario with two
peers, where one peer builds a model using the dataset from
Institution 1, and the other peer uses the dataset from Insti-
tution 2 (see Section V-A). The local models trained at each
institution are then aggregated using the FedAvg algorithm to
produce a global model (see Section IV-B). This evaluation
aims to assess whether our proposed scheme can effectively
learn from heterogeneous data sources while preserving
privacy and still achieving high classification accuracy across
all participating datasets, without data centralization.

Table I shows the accuracy performance of our model
when operating following a federated approach. Our pro-
posed scheme successfully enables a cross-dataset implemen-
tation with high accuracy, demonstrating its effectiveness in
real-world scenarios where data privacy must be preserved.
In practice, the aggregated model achieves high classification
performance across both datasets, with an Fl-score of 0.94
in Institution 1 and 0.83 in Institution 2. Compared to
the traditional centralized approach, our scheme achieves
a higher average F1-Score of 0.89, whereas the traditional
models reach only 0.83 and 0.81 when trained on datasets
from Institution 1 and Institution 2, respectively. Figure 3a
shows the obtained Receiver Operating Characteristic (ROC)
curves of our proposed scheme for each institution. The



model achieves an Area Under the Curve (AUC) of 0.88 for
Institution 1 and 0.99 for Institution 2, demonstrating strong
discriminative performance across both datasets. As a result,
the federated setup allows participating institutions to collab-
oratively build a reliable detection model without exchanging
sensitive patient data. These results highlight the potential
of our FL-based approach to support accurate kidney stone
detection across heterogeneous medical environments while
meeting privacy constraints.

VI. CONCLUSION

Kidney stone detection from Computed Tomography (CT)
images is a challenging task in clinical diagnosis, where
building effective models often requires access to large and
diverse datasets that are typically siloed across institutions.
Unfortunately, sharing such medical data across institutions
is often not feasible due to strict privacy regulations and
patient confidentiality concerns. In this work, we propose a
Deep Neural Network (DNN)-based scheme for image-based
kidney stone detection using CT scans, implemented as a
twofold process. First, we design it to automatically extract
relevant visual patterns to classify the presence of kidney
stones. Second, to preserve privacy and enhance generaliza-
tion, we frame the model’s implementation as a Federated
Learning (FL) task, allowing institutions to collaboratively
train without sharing raw data. The FL training process is
conducted locally at each institution and then aggregated to
form a global model. Experimental results demonstrate that
our proposed model achieves high classification accuracy
within the same training environment, with an Fl-score
of up to 0.94. In addition, in cross-dataset evaluations,
our approach outperforms traditional centralized baselines,
showing significantly lower performance degradation while
preserving patient privacy.

Future research may enhance the proposed Federated
Learning framework by incorporating a multiview strategy
that leverages complementary information from axial, coro-
nal, and sagittal planes for improved model generalization
and diagnostic performance.
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