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Abstract—Industrial control systems (ICS) are often targeted
by highly motivated attackers seeking to disrupt their services
due to its critical nature. Traditional cybersecurity does not
provide the necessary reliability for ICS systems. Even when
implemented with many layers of defense, including network in-
trusion detection systems (NIDS). This paper proposes a dynamic
and reliable intrusion detection model that is implemented in
two steps. First, it proactively classifies each type of possible
network attack on the basis of the current network traffic
behavior. Second, it evaluates the classification quality through
rejection option, which is an indication of its reliability. By
adapting to the evolving network traffic, our proposal increases
the system robustness against motivated attackers. The proposed
model effectiveness has been demonstrated by experimenting in
a controlled testbed with more than 14 attack categories. The
dynamic selection of security mechanisms allowed us to increase
the detection accuracy by up to 26%. Moreover, the classification
evaluation in the proposed model achieves up to 99% detection
accuracy with only 1% rejection.

Index Terms—ICS, SCADA, Intrusion Detection, Machine
Learning

I. INTRODUCTION

Industrial Control Systems (ICSs) are integrated architec-
tures used to manage and control industrial processes and
associated infrastructure in sectors such as manufacturing,
energy, and transportation [1]. It integrates hardware, software,
and network components to enable their automation and opti-
mize industrial processes, including machinery, sensors, data
acquisition, and communication interfaces. The Supervisory
Control and Data Acquisition (SCADA) system is widely
used in ICSs, as it enables the control and automation of
Programmable Logic Controllers (PLCs) through an Human-
Machine Interface (HMI), leveraging various protocols such
as Modbus, DNP3, and OPC for seamless communication and
data exchange. [2]. Securing ICSs systems such as SCADA
is a must due to its critical role in infrastructure systems.
For instance, their breach has been used in a power grid
resulting in widespread power outages, disrupting daily life,
and potentially causing economic and social losses [3].

Given their critical nature, attackers are highly motivated
to disrupt ICSs systems, even utilizing multiple zero-day
vulnerabilities to reach their goal [4]. In practice, attackers

analyze their target ICS infrastructure over extended periods
to effectively craft their attacks. As a result, a comprehen-
sive array of security solutions, encompassing authentication,
authorization, firewalls, and VPNs, must be implemented
to ensure the comprehensive safeguarding of these systems.
Network-based Intrusion Detection Systems (NIDSs) tools
are commonly used by operators to evaluate ICS network
traffic. To achieve intrusion detection, proposed schemes often
employ rule-based or behavior-based approaches [5]. On the
one hand, rule-based techniques detect intrusions based on
a database of well-known attack patterns. Thus, although
they can effectively detect well-known intrusions, they cannot
protect systems against novel threats. On the other hand,
behavior-based approaches perform intrusion detection by
analyzing the event behavior and identifying deviations from
a pre-established normal baseline. Therefore, it has garnered
research interest as they promise to detect new attacks.

Over the last years, several highly accurate behavior-based
NIDSs have been proposed in the literature, wherein authors
typically implement their solution as a pattern recognition
task making use of Machine Learning (ML) techniques [6].
To accomplish this objective, designed schemes develop a
behavioral ML model by evaluating the behavior available in
a training dataset. The accuracy of the obtained model is then
assessed through a testing dataset, which is expected to be
experienced when the system is deployed in production set-
tings [7]. Unfortunately, despite the promising results reported
in the literature, ML-based intrusion detection schemes de-
signed for safeguarding ICS systems are seldom implemented
in practice [8]. Conversely, it remains primarily a research
topic with limited practical implementation.

ICS systems, including SCADA, are the target of highly
motivated attackers who meticulously study their targets to
launch successful attacks [9]. Consequently, stationary ML-
based intrusion detection systems can be easily evaded by
attackers, as the parameters of the deployed model can only
be modified after undergoing a new training process. How-
ever, even if the model’s behavior is not easily assessable
by attackers, as time passes, it will inevitably lead to the
emergence of new attacks, thereby increasing the likelihood



of attackers evading the deployed ML model. This is because
current ML-based techniques do not assess the quality of
their classifications, leaving the network operator unaware of
unreliable outputs [10]. Ideally, used ML-based NIDSs must
be able to proactively select the security mechanisms that
should be used to improve the system’s security.

Contribution. In light of this, this paper introduces a
new intrusion detection scheme for ICS, aiming to enhance
classification quality by dynamically adjusting the deployed
model configuration based on the current system’s input.
The proposal is split into two phases. First, classification is
executed using a dynamic classifier selection scheme that intel-
ligently selects the best suitable classifiers based on the current
event behavior. Our insight is to enhance the classification
quality by dynamically adjusting the system’s classification
configuration based on the evaluated event features. Second,
the classification quality is evaluated using a classification with
a reject option approach. As a result, our system can identify
potential misclassifications made by the model, enhancing its
reliability.

The main contributions of this paper are:
• A new publicly available SCADA dataset containing

realistic network traffic. The dataset contains 14 network
attack categories, assessing 3 different ICS security solu-
tions;

• A new dynamic and reliable intrusion detection model
that proactively selects the appropriate security solution
and effectively detects potential misclassifications. The
proposed scheme reaches up to 99% average accuracy
with only 1% rejection rate.

Roadmap. The remainder of this paper is organized as
follows. Section II introduces the fundamentals behind ICSs
and intrusion detection schemes. Section III describes the
current state of the art on ICS intrusion detection. Section IV
outlines our proposed scheme, while Section VI presents its
evaluation. Finally, Section VII concludes our work.

II. BACKGROUND

This section provides an in-depth description of ICS, en-
compassing SCADA and its main associated infrastructure
components. Furthermore, it introduces the key elements of
ML typically used in NIDSs.

A. Industrial Control Systems

An ICS is a complex, usually legacy, system used to control
and manage a collection of hardware, software, and network
elements related to an industrial complex [1]. It is com-
monly utilized by critical infrastructure companies operating
in various fields, including manufacturing, oil and gas, energy,
water treatment, and more. To accomplish this objective, a
typical ICS is composed of three main components, namely
SCADA, PLC, and communication components. SCADA aims
at managing and controlling the industrial complex assets,
including its sensors, equipment, and devices, through an HMI.
It facilitates data collection and storage of assets, generating

and collecting alerts, and the capability to issue control com-
mands. PLCs are digital devices responsible for controlling
industrial machinery or processes. They serve as an interface
between the SCADA system or other associated controllers,
facilitating interaction with sensors and actuators. Finally,
the communication components utilize various communication
protocols, such as Ethernet, Profibus, and Modbus, to facilitate
the interaction between the SCADA system and the PLC.

Hence, ICSs are inherently cyber-connected systems, ren-
dering them vulnerable to highly motivated attackers who
seek to disrupt the functioning of critical industrial infras-
tructure [11]. A vulnerable ICS infrastructure allows attackers
to gain control over industrial PLCs, posing risks to industry
assets, disrupting their services, and resulting in financial and
social losses. For example, in 2015 BlackEnergy malware
infected Ukrainian SCADA systems used in a power grid ICS,
resulting in widespread power outages affecting over 230 thou-
sand consumers [12]. Unfortunately, securing ICSs is not an
easily achievable task, as their architecture typically comprises
interconnected components that can not be easily updated [13].
Consequently, ICS operators must employ multiple security
components, including authentication, authorization, firewalls,
VPNs, and NIDS, to fortify the underlying architecture.

B. Network-based Intrusion Detection System

Behavior-based NIDSs are typically used as a security
mechanism to monitor and analyze network activities. So-
lutions are generally executed as a pattern recognition task
implemented through ML techniques [14]. The entire process
comprises four main modules. Firstly, the Data Acquisition
module continuously gathers network events from the moni-
tored environment, such as collecting network packets from a
Network Interface Card (NIC). Secondly, the Feature Extrac-
tion module extracts the behavior of the collected data and
compiles a feature vector. The behavior of network events is
generally represented as a network flow, summarizing the com-
munication between two network entities within a given time
window. For instance, computing the number of exchanged
network packets between two hosts over the last 15 seconds.
The extracted feature set serves as input for the Classification
module, which utilizes a ML model to classify the input as
either normal or intrusion. Lastly, the Alert module signals
events classified as intrusions to the network operator.

In practice, the reliability of designed behavior-based NIDSs
relies on the quality of the underlying used ML model [15].
Unfortunately, creating a realistic intrusion dataset that ac-
curately represents the characteristics of ICS systems is not
easily achievable. The behavior of ICS systems varies widely
depending on the associated industrial assets, requiring ML-
based NIDSs can accurately capture this variability [16].
Notwithstanding, due to the critical nature of these systems,
attackers are highly motivated to evade the reliability of
designed security mechanisms, often employing a wide range
of zero-day attacks to compromise their security. Yet, existing
ML-based NIDSs for ICSs often overlook these challenges and
rely on traditional pattern recognition approaches, which are



known to be unable to achieve the necessary level of reliability
required for industrial architectures [17].

III. RELATED WORKS

Over the last years, several works have proposed highly ac-
curate ML-based techniques for NIDSs. Despite the promising
reported results, proposed schemes are seldom implemented in
production environments, where network operators typically
opt for traditional misuse-based approaches. The network
behavior experienced in production ICSs is highly dynamic
due to the nature of industrial assets, making the design of a
realistic dataset a challenging task [18]. Notwithstanding, the
designed techniques must be capable of adapting to changes in
attacker behavior, driven by their strong motivation to disrupt
the critical nature of monitored industrial assets.

In general, the approaches proposed in the literature prior-
itize efforts to enhance the system’s accuracy. For instance,
Ahakonye et al. [19] proposes a feature selection technique
for ML-based NIDS in SCADA systems. The authors im-
prove their false-positive rates when proactively selecting their
model features in outdated NIDS datasets. Unfortunately, the
applicability of their proposed model in real-world ICSs is
overlooked. Similarly, Y. Ouyang et al. [20] proposes NIDS
implemented using a few-shot learning scheme for SCADA
systems. Their proposed scheme improved detection accuracy
compared to other approaches on a SCADA-related dataset.
The impact of motivated attackers on circumventing their
proposed model is not evaluated. R. Grammatikis et al. [21]
addressed the lack of reliability in current ML-based NIDSs in
the literature by developing a protocol-specific intrusion detec-
tion scheme. Their model was able to significantly improve the
system’s accuracy when compared to traditional techniques.
However, the protocol-specific nature of the scheme may lead
to a lack of generalization, thus, unreliability to be used
in production environments. Similarly, S. Alem et al. [22]
proposed a more specific intrusion detection scheme for ICSs
aiming PLC intrusion detection. The authors use a neural
network that evaluates PLC-related messages. Although the
authors assess the quality of their proposed scheme in a real
industrial environment, the applicability to other industrial
assets is not evaluated.

The lack of reliability in ICS intrusion detection is rarely
considered in related works. E. Anthi et al. [23] proposed
a three-layered ICS intrusion detection scheme aiming for
higher detection effectiveness. Their model significantly im-
proved accuracy when the detection layers were jointly used.
Unfortunately, their evaluation uses an unrealistic intrusion
dataset that does not realistically depict the ICS nature. J.
Song et al. [24] proposed an intrusion detection scheme for
energy ICSs that makes use of temporal pattern classification
coped with anomaly detection. The authors claim to improve
the reliability of their system by assessing the temporal nature
of ICS events. Despite the scheme’s improvement in accuracy
compared to other techniques, the study did not assess the
model’s quality in the presence of highly motivated attackers.
L. Rosa et al. [25] proposed a new feature aggregation scheme

Fig. 1: A reliable intrusion detection model for industrial
control systems. The proposed scheme proactively selects the
most suitable security mechanisms tailored for the current
network traffic.

tailored for ICSs. Their approach improves the detection
performance when compared to related work. However, it
overlooks the detection reliability in the presence of new kinds
of attacks. J. Lopes et al. [26] proposed intrusion detection
targeted explicitly at the IEC 61850 protocol. Their approach
improves detection reliability by assessing the specificities
of the IEC 61850 protocol. The detection on other kinds of
network protocols are not addressed. Similarly, S. Mubarak
et al. [27] concentrate on detecting the Modbus protocol,
enhancing detection accuracy while tailoring their detection
module to evaluate a single protocol.

As a result, current approaches in the literature often fail
to address the detection reliability required by current ICSs
infrastructures. This is because, in production environments
ICS, attackers are motivated to circumvent the reliability of
used security mechanisms. As a consequence, the employed
detection approaches must be capable of handling a broader
range of challenges during the detection phase, including the
detection of new attacks and proactively selecting the security
mechanisms to address incoming threats.

IV. A RELIABLE INTRUSION DETECTION MODEL FOR
INDUSTRIAL CONTROL SYSTEMS

To address the lack of reliability in current ML-based NIDS
for ICSs, we propose a reliable intrusion detection model.
The proposal’s goal is to select the most appropriate security
mechanisms that should be employed to detect the current
network traffic behavior. In practice, the system can adapt to
the current Operational Technology (OT) incoming network
traffic, hence, increasing the system’s robustness to highly
motivated attackers. Notwithstanding, our proposed mecha-
nism assesses the quality of the chosen security mechanisms
to evaluate the current network traffic, signaling potentially
unreliable classifications. Figure 1 shows our proposed model
overview, comprising two main modules: Dynamic Selection
and Verifier.



The Dynamic Selection module goal is to adjust the used
security mechanisms based on the current OT network traffic.
The model assesses the network traffic behavior and intelli-
gently selects a subset of security mechanisms that are most
suitable for classifying the incoming network traffic behavior.
Our main insight is to select which security tools should
be used in a proactive manner to ensure that our system
can maintain its classification reliability. Consequently, the
proposed model can enhance the system’s accuracy, even when
facing dynamic attacker behavior.

The Verifier module goal is to ensure the system’s reliability
is maintained as time passes, even in the presence of new
network-based attacks. To achieve such a goal, the decision
performed by the Dynamic Selection module is assessed
through classification with a reject option. The primary objec-
tive is to accept only highly confident classifications, rejecting
unreliable counterparts as time progresses. As a result, our
proposed scheme can dynamically adapt based on the current
OT network traffic while maintaining the system’s reliability
over time.

The following subsections provide a more detailed descrip-
tion of our proposed model architecture, including the modules
that implement it.

A. Dynamic Selection

Due to their critical nature, ICS systems are frequently tar-
geted by highly motivated attackers who often exploit multiple
zero-day vulnerabilities to achieve their objectives. As a result,
deployed architectures are designed to incorporate multiple
security mechanisms to improve the system’s security, such as
firewalls, rule-based and behavior-based NIDSs. Despite such
efforts, the static behavior of deployed security mechanisms
makes them vulnerable to circumvention by attackers. This
is because, over an extended period, ranging from days to
weeks, attackers can easily deduce the security rules of the
ICS, exploiting them as necessary to launch their attacks
effectively. In light of this, the Dynamic Selection module’s
goal is to proactively assess the ICS network traffic behavior
to select the most suitable security mechanisms to be used.
As a result, the system can effectively address the detection
of new types of attacks by assessing and selecting the most
appropriate security mechanisms to detect them.

To implement the Dynamic Selection module, we consider
the selection of the security mechanisms as a dynamic selec-
tion of classifier task. In practice, we build a dynamic selection
of classifier model based on the events correctly classified by
each security mechanism. Algorithm 1 shows the overview
of our model-building procedure. It receives as input a set
of security mechanisms (SM ), a previously labeled network
event dataset (D), and a dynamic selection model (h). The
algorithm iterates through the dataset D to build the dynamic
selection label (Y), which maps the security mechanisms that
correctly classify the input event. The dynamic selection model
(h) is built based on the obtained label Y . As a result, the
model is fine-tuned to identify the security mechanisms that
can accurately classify the evaluated network event.

Algorithm 1 Dynamic Security Mechanism Building
Require:

Security Mechanisms SM
Network Event Dataset D
Dynamic Selection Model h
procedure MODEL BUILDING(SM , D, h)
Y ← ∅ ▷ Dynamic Selection Label
for xi ∈ D do

ysm ← ∅
for smi ∈ SM do ▷ Find Correct Mechanisms

y ← apply(smi, xi)
if label(xi) is y then

ysm ← ysm + smi

end if
end for
Y ← Y + {xi, ysm} ▷ Label Correct Mechanisms

end for
return h.fit(D,Y) ▷ Fit Dynamic Selector

end procedure

During production deployment, the resulting model is em-
ployed as a security mechanism selector (Fig. 1, Dynamic
Selection). In practical terms, the model output is a list of
security mechanisms that should be employed to detect the
current network event. Consequently, the Dynamic Selection
module can adjust the security mechanisms based on the
current network traffic behavior. This approach enhances our
system’s reliability as the security mechanisms are proactively
selected based on the evaluated network behavior. The selected
security mechanisms coped with the classification confidence
value are used as input to the subsequential Verifier module
(Fig. 1).

B. Verifier

Given their exposure to motivated attackers, ICSs are often
the target of zero-day attacks. As a result, despite selecting
the most suitable set of security mechanisms, as time passes,
attackers will inevitably find ways to circumvent the reliability
of the current security solutions in use. To tackle this chal-
lenge, the goal of the Verifier module is to assess the quality
of the current security solutions in detecting the network traffic
accurately. In practice, the module evaluates the quality of the
decisions made by the Dynamic Selection module, alerting
the network operator about unreliable security mechanism
selections. Based on the assessed decisions, the operator may
take counteractions, such as redirecting the identified network
traffic to a honeypot or utilizing it to update the rules of
the deployed security mechanisms. To achieve this goal, the
Verifier module introduces a classification with reject option
to the outputs of the Dynamic Selection module.

Classification with a reject option implements the rejection
decision function on a given input event by combining the used
model h with a rejector r. This approach allows the system to
reject classifying certain events when their confidence levels
do not meet a predefined threshold, reducing the likelihood of



misclassifications. The model h produces classification confi-
dence values α = {αnormal, αsm} for each input event x. The
αnormal denotes the event confidence to belong to the normal
class, and αsm the event confidence to belong to attack, hence,
should be forwarded to a set of security mechanisms, such that
α ∈ R[0, 1]. The rejector r accepts or rejects the classification
based on its associated confidence values α. Finally, the model
h implementation is coped with the rejection function, as
determined by the following equation:

h(x, t)

{
∅ if α ≤ t

h(x) otherwise
(1)

where ∅ denotes events likely to be incorrect decisions the pre-
dictor performs. Therefore, our proposal assesses the model’s
classification confidence values α to implement the rejector
in a classifier agnostic rationale to achieve such a goal.
Equation 2 shows the rejector implementation function in our
proposal.

d(h, x, t)


Normal Classified︷ ︸︸ ︷
h(x, tnormal) if αnormal > αsm

h(x, tsm)︸ ︷︷ ︸
SM Classified

otherwise
(2)

where t denotes the pair of acceptance threshold values for
each class such that t ∈ R[0, 1], and h a decision function
coped with the proposal Verifier module.

Consequently, the Verifier module establishes the input
events acceptance based on the Dynamic Selection classifi-
cation confidence level α, which is assessed based on the
acceptance threshold t. The threshold must be defined based on
the network operator’s discretion. A low acceptance threshold
will result in fewer network events being rejected, thereby in-
creasing the system’s exposure to potential threats. Conversely,
a higher acceptance threshold will lead to the rejection of
more network events, enhancing the system’s reliability but
requiring more intervention from the network operator. Our
proposal finds the optimal acceptance threshold by solving the
following equation:

T (h,D, y) = argmin
t×2∈R[0,1]

Error(h,D, y, t) +Rej(h,D, y, t)

(3)
where T (h,D, y) is a threshold finding function for model h
on dataset D, with a label y, while the functions Error, and
Rej measures the respectively error and rejection rates of the
model h, on dataset D, with a label y while using threshold t.
As a result, we determine the optimal rejection threshold by
balancing the minimum error and rejection rate.

C. Discussion

Our proposed model aims to enhance the reliability of
ICS NIDS by proactively selecting the deployed security
mechanisms (Section IV-A) and simultaneously identifying
unreliable decisions (Section IV-B). On the one hand, the
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Fig. 2: Implemented proposal prototype and used testbed
throughout the conducted experiments.

Dynamic Selection module enhances the system’s robust-
ness against motivated attackers who exploit variable attacker
behavior to undermine the reliability of deployed security
mechanisms. The module dynamically selects the security
mechanisms used to detect the current network traffic behavior,
thereby increasing the challenge for attackers to evade the
designed security tools. On the other hand, the Verifier module
evaluates the quality of decisions made by the preceding mod-
ule, effectively signaling unreliable decisions to the network
operator. The main insight of the proposal is to enhance the
system’s robustness against highly motivated attackers seeking
to disrupt the security of ICS systems.

V. MODEL IMPLEMENTATION

This section elaborates further on our model implementa-
tion, including the APIs utilized and the considered architec-
ture. Furthermore, it describes the deployed testbed used to
evaluate our proposed method.

A. Prototype

We implemented and deployed a proposal prototype in a
distributed environment, as illustrated in Figure 2. We consid-
ered a SCADA system deployed through ScadaBR v.1.0CE.
In addition, we deployed a honeypot through the honeyd
v.1.5c, which mirrors the incoming network traffic to another
ScadaBR server. The honeypot is used in our proposal to
receive rejected network traffic by our Verifier module. The
incoming OT network traffic can be evaluated by three security
tools, as follows:

• Firewall. A set of iptables rules deployed on top of an
Ubuntu v.22.04 OS. The firewall rules were defined based
on related works [28]

• Behavior-based NIDS. A ML-based NIDS implemented
using a Naive Bayes classifier. The classifier was imple-
mented using the likelihood of the features as Gaussian on
top of scikit-learn API v.0.24. The network flow features
were extracted using FlowTBag feature extractor [29].



TABLE I: Generated network traffic throughout our testbed.

# Behavior (Tool) Net. Pkts. Exec. Time (m)
1 XSS (Acunetix) 6k 1028
2 Code Injection (Arachni) 17k 392
3 Read Register (Smod) 58k 153
4 DOS Write Register (Smod) 2k 133
5 DOS Write Coils (Smod) 1k 4
6 Portscan (Nmap) 140k 33
7 Write Single Coils (Smod) 45k 52
8 Advanced scan (Nessus) 35k 33
9 Read Input Register (Smod) 150k 56

10 Scanner UID (Smod) 38k 86
11 SQL Injection (Arachni) 4k 70
12 Read Coils (Smod) 320k 20
13 Scanner (Smod) 2k 113
14 Write Register (Smod) 296k 164
- Normal (Workload) 5.1B 5760

The procedure used for the ML model training was
conducted similarly to our proposal, further described in
Section VI-A.

• Misuse-based NIDS. A signature-based NIDS imple-
mented through Snort tool v.3.0, using the snort3 com-
munity rules.

Our proposal (Fig. 2, NIDS pipeline) was implemented
to assess the incoming SCADA network traffic. To simulate
various OT-related network traffic, we utilized several well-
known workload tools, generating traffic for protocols such as
Modbus, DNP3, OPC, and web service requests to SCADA.
The generated network traffic is collected by our Data Acqui-
sition module implemented using SCAPY v.2.5.0. Similarly,
we extract the network features using FlowTBag feature ex-
tractor [29], which summarizes the network communication in
15 second time-window intervals. We implement the Dynamic
Selection module through the DESLib API v.0.4, and assess
the classification confidence on the Verifier module through the
predict proba function. The model building details are outlined
in Section VI-A.

B. Testbed

The described prototype was deployed in a controlled
testbed designed for data collection purposes. To accomplish
such a task, we deploy 100 client workload machines to
generate the normal network traffic. At randomly varying in-
tervals, we generate attacker-related network traffic aiming the
deployed SCADA. At total we use 14 attacker machines that
generate specific network attacks. The testbed was executed
for a total of 96 hours, the generated network traffic is shown
on table I.

Throughout the testbed execution, we logged the outputs of
the deployed security mechanisms (Fig 2, Firewall, Behavior-
based NIDS, and Misuse-based NIDS). The outputs are used
to build our Dynamic Selection module, further described in
Section VI-A. In addition, the generated network traffic is
stored in a PCAP format to enable the later assessment of
our solution.

VI. EVALUATION

This section evaluates the proposed model for reliable
network-based intrusion detection in ICS by addressing four
main research questions:

• (RQ1) How does traditional security mechanisms detect
ICS attacks?

• (RQ2) Can our proposal dynamic selection improve the
system accuracy?

• (RQ3) Can our proposed classification assessment tech-
nique identify unreliable classifications?

The following subsections outline the construction of the
used models in the evaluation and describe their performance
in the testbed.

A. Model Building

The performance of the proposed model, as depicted in
Figure 1, was evaluated using the testbed described previously
(see Section V-B). To achieve such a goal, we consider a
scenario in which new attacks are generated over time by
building three datasets as follows:

• Training. Attacks from 1st to 5th and 40% of normal traffic
are utilized for training (Table I).

• Validating. Attacks from 6th to 10th and 30% of normal
traffic are utilized for testing (Table I).

• Testing. Attacks from 11th to 14th and 30% of normal
traffic are utilized for training (Table I).

The training dataset is used for model training, the val-
idation dataset for model fine-tuning, and testing dataset
for measuring the model accuracies. We evaluate our pro-
posed Dynamic Selection implemented with three distinct dy-
namic selection classifiers, namely k-Nearest Oracle-Eliminate
(KNORA-E), k-Nearest Oracle Union (KNORA-U), and k-
Nearest Output Profile (KNOP). The classifiers are imple-
mented using a bagging pool of 100 estimators with replace-
ment event selection. We also use 11 neighbors to estimate
the competence region and k-Nearest Neighbor (KNN) for
distance computation. The parameters were empirically set,
and no significant influence on the results was observed
when varying them. The classifiers were implemented on
DESLib API v.0.4. Similarly, we train the Behavior-based
NIDS (Fig. 2) using the Gaussian Naive Bayes implemented
on top of scikit-learn.

Both our proposed Dynamic Selection and the Behavior-
based NIDS were trained on the training dataset. The datasets
were built by extracting network flow-based features using
the FlowTBag feature extractor [29], which summarizes the
network communication in 15 second time-window intervals.
Due to the highly unbalanced nature of the training datasets,
with the majority of events being classified as normal, we
apply a random undersampling without replacement technique.
The resulting dataset is normalized using a minimum versus
maximum range normalization approach, which scales the
values to a range from 0 to 1.



TABLE II: Detection accuracy for each network traffic on our
testbed according to the detection approach.

Detection Accuracy (%)
Traditional Dynamic Selection
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XSS 40.5 50 90.9 48.0 100 59.6
Code Injection 50 95.6 95.6 99.0 100 98.8

Read Reg. 96.6 99.7 50 100 98.5 100
DOS Write Reg. 72.5 97.2 50 100 95.5 100

DOS Write Coils 88.2 50 50 100 50.8 100
Portscan 50 50 100 100 100 100

Write Single Coils 88.2 50 50 100 100 100
Advanced scan 44.9 50 98 99.9 99.6 99.9

Read Input Reg. 96.6 99.7 50 100 100 100
Scanner UID 44.3 50 50 100 100 100

SQL Injection 50 50 81.9 50.9 100 50.9
Read Coils 95.3 99.5 50 100 99.7 100

Scanner 52.6 50 100 50 50 50
Write Reg. 91.6 99.7 50 100 100 100

Normal 100 100 100 87.4 62.4 85.9

B. ICS Intrusion Detection

To answer RQ1 we first investigate the detection perfor-
mance of the selected security mechanisms (Fig. 2, Security
Mechanism Pool). To achieve such a goal, we measure the
intrusion detection performance on our previously executed
testbed (Table I). The evaluation goal is to assess the reliability
of commonly used ICS security mechanisms. Table II shows
the detection accuracies for each generated network attack
and used security mechanism (Traditional). In practice, we
observed that all the assessed traditional approaches had their
detection reliability impacted by at least a subset of the
examined attacks. As an example, when aiming for a detection
accuracy of 95%, the evaluated security solutions achieved
their objective for only 3, 6, and 4 out of the 14 of the
examined attacks for the Firewall, Behavior-based NIDS, and
Misuse-based NIDS, respectively. The results suggest that
the evaluated security solutions lacked the required detection
reliability for ICSs. In addition, the variation in accuracy
for different evaluated attacks, observed through the distinct
detection performance of each security mechanism for various
attack categories, highlights the potential for our solution to
enhance detection accuracy when security mechanisms are
appropriately selected based on the network traffic behavior.

To answer RQ2, we further investigate how our Dynamic
Selection approach can further improve the system’s detection
reliability. To accomplish this objective, the selected dynamic
classifiers (see Section VI-A) are trained to select the security
mechanisms that correctly classify the network event (Alg. 1).
During the implementation, we adjust the training label based
on the correctly classified events by each security mechanism
and subsequently evaluate the obtained model on the complete
testing dataset.

Table II shows the detection accuracy for our Dynamic
Selection module, as measured by the accuracy of selecting

(a) ROC Curve (b) KNORA-E Error vs. Reject

Fig. 3: Detection performance of our proposed dynamic selec-
tion model with and without the classification assessment.

Fig. 4: Sorted top detection accuracy for each selected intru-
sion detection technique.

the security mechanism that correctly classified the network
event. The results indicate that our proposed approach, which
proactively selects the security mechanism, can significantly
increase the system’s detection accuracy. For example, when
aiming for a detection accuracy of 95%, the most accurate
dynamic classifier (KNORA-E) could adequately identify 11
out of the 14 attacks, reaching an average accuracy of 90%,
while the traditional techniques reach an average accuracy of
only up to 71% (Behavior-based NIDS), an increase of 26.7%.
In practice, our proposed model effectively identified which
security mechanism should be used to detect the evaluated
network traffic.

Finally, we answer RQ3 by investigating how the proposal
Dynamic Selection coped with the Verifier module can increase
the system accuracy further (see Fig. 1). To accomplish this
task, we evaluate the KNORA-E, which has been identified
as the most accurate dynamic selection classifier, as shown
in Fig. 3a. To find the optimal acceptance threshold for both
normal and sm classes, we use the Class Related Threshold
(CRT) in conjunction with the KNORA-E as the baseline. The
thresholds are varied in increments of 0.01, ranging from 0.0
to 1.0, to solve Eq. 3. Figure 3b shows the error vs. rejection
threshold for the KNORA-E classifier on the testing dataset.
Our proposed Verifier module significantly increases system
accuracy with minimal trade-off in terms of rejections. For
instance, the Verifier module achieves a 1% error rate with a



rejection rate of only half a percent.
We compare our solution with the traditional security mech-

anisms to assess the proposal’s performance. Figure 4 shows
the sorted detection accuracy of each evaluated detection
technique for the testbed attacks. Our proposed model with the
Verifier technique reaches a 95% detection accuracy for 12 out
of the 14 evaluated attacks, while the traditional approaches
are only able to reach the same level of accuracy for 5 attack
categories (Table II, Behavior-based NIDS).

VII. CONCLUSION

Given their critical nature, attackers are highly motivated
to disrupt ICSs systems, demanding that used security mecha-
nisms can reach high detection accuracies. Yet, current security
mechanisms are unable to reach the needed level of reliability
for ICS deployment. In light of this, this paper proposed a
new dynamic selection model for NIDSs aiming for improved
detection accuracies while ensuring system reliability in the
presence of new attack categories. Our proposal enables the
proactive selection of security mechanisms based on the
current network traffic behavior. In addition, we can further
enhance the system reliability by evaluating the detection
quality based on the classification confidence values. The
experiments have demonstrated that our proposal surpasses
traditional security solutions and provides the required level
of detection reliability for ICS deployment.
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