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Abstract—Machine learning (ML) techniques for network
intrusion detection is still limited in production environments
despite promising results reported in the literature. Network
traffic behavior exhibits considerable variability and evolves over
time, requiring periodic model updates. This paper proposes
a new approach to intrusion detection modeling based on
CNN and transfer learning to reduce updating overhead. Its
implementation is twofold. First, CNN is implemented using flow-
based feature expansion derived from neural flattened hyperdi-
mensional space. This expanded space representation contributes
to a longer model lifetime and maintains system accuracy over
time. Second, the required training data and computational cost
are significantly reduced by performing periodic model updates
based on a transfer learning approach. Experiments on a novel
dataset with over 2.6 TB of data and one year of real-world
network traffic demonstrate the feasibility of the proposal. Our
proposal improves the average F1 score by up to 0.19 when
no model updates are performed. While improving the system’s
accuracy, model updates impose only 42.8% of the computational
cost.

Index Terms—Intrusion Detection, CNN, Transfer Learning

I. INTRODUCTION

In recent years, there has been a substantial escalation in the
incidence of network attacks. For example, a recent security
report [1] indicates a 150% surge in the number of Distributed
Denial-of-Service (DDoS) attacks over the past three years.
Network operators employ Network-based Intrusion Detection
Systems (NIDSs) to identify the increasing array of threats.
These systems utilize either rule-based or behavior-based
techniques [2]. Rule-based approaches searches for well-
known attack patterns in their input data, making them ca-
pable of detecting only previously known threats. Conversely,
behavior-based techniques identify threats based on deviations
from the modeled behavior, allowing them to detect new at-
tacks provided that these new threats behave similarly to those
modeled during the system’s behavior modeling process [3].

Consequently, behavior-based intrusion detection tech-
niques have been the most extensively researched approach
in the literature [2], with authors frequently employing pattern
recognition techniques, often in the form of Machine Learning
(ML) tasks [4]. To attain this objective, a behavioral ML model
is developed based on the environment behavior available in a
training dataset [5]. Subsequently, the ML model can be used
to identify intrusions in production [6].

In practice, networked environments present numerous chal-
lenges to ML-based techniques in contrast to fields where it
has been successfully applied over the years [5]. On the one

hand, network traffic behavior undergoes significant changes
over time, either due to the emergence of new attacks or the
introduction of new services [2]. These changes require the
ML model to be regularly updated, a process that entails the
creation of a new training dataset and the conduction of a
computationally intensive model training. As a result, provid-
ing an updated ML model can often take several days or even
weeks to be conducted. In addition, the behavior of network
traffic in production environments can be highly variable,
featuring multiple variations that arise from network traffic
properties. This attribute demand that the underlying ML
model can effectively capture dynamic and variable behavior.
Surprisingly, the majority of current ML-based approaches rely
on shallow classifiers [4]. While these approaches often yield
high accuracy rates during testing, they struggle to represent
the true complexities of network traffic due to the limitations
of their training structure [7].

In recent years, a substantial portion of ML applications
has relied on Deep Neural Network (DNN) techniques, no-
tably Convolutional Neural Networks (CNNs), which have
showcased their excellence across diverse domains like image
recognition and object detection, delivering state-of-the-art re-
sults [8]. However, the effectiveness of CNN-based approaches
typically hinges on having substantial features in the input data
(e.g., pixels in image applications) and access to significant
training data. This presents a challenge when applying CNN
to NIDS, as the network traffic behavior is usually represented
by a constrained number of flow-based features, typically num-
bering in the dozens derived from summarizing network traffic
over time windows [9]. Conversely, NIDS model training and
update task requirement for minimal data is a must, given
the challenges in acquiring labeled network traffic, a task that
frequently relies on human intervention [5].
Contribution. In light of this, this paper introduces a new
network-based intrusion detection model that utilizes image-
based CNNs and employs transfer learning for model updates.
The objective of this model is to extend the model’s lifespan
while reducing the cost of model updates. The implementation
is divided into two phases. First, the CNN is implemented
by expanding flow-based features into a hyperdimensional
space, resulting from a neural network’s hidden layer. This
expanded space representation contributes to an extended
model lifespan and the maintenance of system accuracies over
time. Second, our approach performs periodic updates through
a transfer learning method leveraging the outdated CNN model



to facilitate model updates. The key insight is that model
updates can be carried out with decreased computational costs
and a reduced need for training data by leveraging the prior
knowledge of the outdated CNN model.

The main contributions of this paper are:
• An evaluation of conventional shallow-based intrusion

detection approaches concerning their accuracy in intru-
sion detection over time. The experiments on a novel
dataset comprising over 2.6TB of real network traffic re-
vealed that these approaches experience a notable decline
in accuracy as time passes.

• A new network-based intrusion detection model that
performs the classification task through an image-based
CNN and model updates through transfer learning. The
proposed model can improve the system F1-score by
up to 0.19 while demanding an average computational
training cost of only 42, 8%.

II. PRELIMINARIES

Network operators frequently rely on applying NIDSs tools
to identify network-related attacks [10]. In general, behavior-
based NIDSs are built by implementing four sequential mod-
ules, namely Data Acquisition, Feature Extraction, Classifi-
cation, and Alert [11]. First, the Data Acquisition module
collects network events from the monitored environment, such
as network packets from a Network Interface Card (NIC).
Second, the behavior of the collected events is extracted
by a Feature Extraction module, compounding an associated
feature vector. In such a case, in general, the behavior of
network events is represented by network flows that summarize
the network communication between hosts and services in a
given time window through dozens of features. The extracted
feature vector is classified by a Classification module as either
normal or attack, e.g., by applying a ML model. If the event
is classified as attack, the Alert module properly reports it.

Over the past few decades, various approaches have been
proposed for the classification task, with authors often turning
to the application of ML techniques [4]. In such scenarios, an
ML model is constructed using a training dataset comprising
multiple samples expected to represent real-world production
deployment behavior. In practice, network environments ex-
hibit dynamic behavior, entail ML models that can handle
these complexities, often only achievable by having large
labeled training datasets [12]. Notwithstanding, even if the
underlying ML model can address such complexities, it will
need to be regularly updated, given the behavior changes of
network traffic as time passes [5].

III. RELATED WORKS

Most ML-based NIDS approaches in the literature pre-
dominantly focus on achieving improved intrusion detection
accuracy [4]. Albeit the promising reported results, they tend
to overlook challenges associated with model updates arising
from new network traffic [5] and the potential influence
of network traffic variation on their proposed schemes. For
instance, A. E. Kamali et al. [13] proposed the application

of CNN coped with a Recurrent Neural Network (RNN)
to conduct intrusion detection. Their scheme yielded ex-
ceptionally high detection accuracies on static and outdated
datasets, largely overlooking the dynamics of network traffic
behavior. Similarly, L. Yang and A. Shami [14] proposed the
utilization of an ensemble of CNNs for intrusion detection,
which led to improved detection accuracy compared to tra-
ditional techniques. However, their approach did not address
the methodology for conducting model updates. To enhance
classification reliability, authors also turn to the fine-tuning
of model hyperparameters. As an example, A. N. Calugar et
al. [15] optimizes CNN hyperparameters to increase classifi-
cation accuracy on static datasets. Their approach overlooks
network traffic behavior variations and how model updates can
be conducted.

In recent years, several works have challenged the applica-
bility of reported results in intrusion detection. G. C. Bertoli
et al. [16] pursued better model generalization in spite of
accuracy. The authors showed that CNN can improve detection
generalization on multiple intrusion datasets. Their work did
not address how model updates can be conducted. O. D. Okey
et al. [17] aimed better model generalization through CNN
transfer learning. The authors showed that pre-trained models
can improve accuracy, but no discussion was made on how
it can alleviate model updates. A similar approach was intro-
duced by Sk. T. Mehedi et al. [18], employing transfer learning
to enhance detection accuracy on a heterogeneous testbed.
Despite improving detection accuracy and generalization, they
did not address model updates. As a result, there is still a gap
in the literature on understanding how network traffic behavior
changes can be addressed in ML-based intrusion detection.

IV. PROBLEM STATEMENT

In this section, we delve deeper into the challenges posed by
changes in network traffic behavior within production environ-
ments for traditional ML-based NIDS. To be more specific, we
first introduce the dataset we have utilized, which encompasses
a year’s worth of real network traffic. Subsequently, we assess
the performance of ML-based intrusion detection techniques.

A. MAWIFlow

To enable the evaluation of intrusion detection schemes
in the context of changing network traffic behavior, our
work relies on the MAWIFlow dataset [5]. This dataset was
created using Samplepoint-F from the MAWI archive, which
comprises real network traffic collected daily for 15-minute
intervals from a transit link between Japan and the USA. For
the purposes of our evaluation we consider the entire network
traffic collected during the year of 2014, which is subsequently
used to assess widely used ML-based NIDS. The dataset
contains over 2.6 TB of data, consisting of ≈ 300 billion
network packets. To label events, we employ an unsupervised
ML technique from MAWILab [19], which automatically
classifies input records as either normal or attack. MAWILab
utilizes several unsupervised ML algorithms to detect anoma-
lies in MAWI data without the need for individual or human
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(b) Extra Trees (EXTRA)

Fig. 1: Accuracy trend over a year of commonly used classi-
fiers without periodic model updates. Classifier is trained in
January and evaluated in subsequent months without updates.

intervention in the event labeling task. The detected anomalies
are labeled as attack, while the remaining data is assumed
to be normal events. For the feature extraction task, we use
BigFlow [5], which groups events in 15-second intervals and
extracts 60 flow-based features from Nigel feature set [9].

B. On Dealing With Real Network Intrusions Over Time

The evaluation aims to answer two main Research Questions
(RQs):

• (RQ1) What is the accuracy performance of selected
techniques over time without model updates?

• (RQ2) How do periodic model updates improve the
accuracy performance of selected techniques?

Two commonly used classifiers were evaluated, namely
Random Forest (RF) and Extra Tree (ExT). Both use a
decision tree as their base learner, implemented through a
C4.5 algorithm, with a confidence factor of 0.25 and gini
as the node split quality metric. Both classifiers use 100
decision trees as their base-learner and gini as quality measure
split. In the training procedure, random undersampling without
replacement was applied. The classifiers were implemented
using scikit-learn API 1.3.1. The classifiers were evaluated
through the False Positive (FP) and False Negative (FN)
rates. The FP denotes the ratio of normal samples incorrectly
classified as attack, and the FN denotes the ratio of attack
instances incorrectly classified as normal.

To address RQ1, we assess the performance of the chosen
classifiers without conducting any model updates as time pro-
gresses. The objective of this evaluation is to determine how
the changes in network traffic behavior over time affect tradi-
tional ML-based intrusion detection techniques. To accomplish
this objective, we conduct the model training process for the
selected classifiers using data from January. Subsequently, we
evaluate the accuracy performance of these classifiers over
the year. This evaluation will help us understand the impact
of evolving network traffic behavior on the performance of
traditional ML-based intrusion detection techniques.

Figure 1 illustrates the accuracy performance of the selected
classifiers when no model updates are conducted. The results
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Fig. 2: Accuracy trend over a year with periodic model updates
using commonly used classifiers, where the model is updated
on a monthly-basis.

show that the error rates are notably low in January, which
is the time of the initial model training. However, as time
progresses, these error rates gradually increases. For instance,
when examining the RF classifier (Fig. 1a), we observe a FP
rate of 44% in July, indicating an 25.4x increase compared to
its performance in January. This trend is consistent with the
ExT and highlights that current ML-based intrusion detection
techniques, as used in the literature, struggle to adapt to the
changes in real network traffic. These techniques experience a
significant degradation in accuracy as time passes, indicating
their limitations in handling evolving network traffic behavior.

To address RQ2, we assess the accuracy performance of
the selected classifiers when model updates are conducted
monthly. To accomplish this objective, model updates are
performed at the beginning of each month using data from
the previous month. For example, on March 1st, the models
are updated using data collected from February 1st to February
28th. This approach allows us to analyze how periodic model
updates may improve the performance of traditional ML-based
intrusion detection techniques over time.

Figure 2 illustrates the accuracy performance of the selected
classifiers when model updates are conducted every month.
A notable improvement in accuracy can be observed when
comparing these updated models to their counterparts without
updates (Fig.1 vs. Fig.2). In practice, model updates make the
evaluated ML classifiers capable of maintaining their accuracy
over time. For example, the monthly updated RF classifier
(Fig. 2a) presented a FP rate of 1.3% in July, a 33.5x decrease
when compared to its no-updated counterpart. This indicates
that periodic model updates significantly improve the perfor-
mance and reliability of traditional ML-based techniques.

C. Discussion

The evaluation in this section highlights the limitations
of current ML-based intrusion detection techniques in real
production environments. These techniques struggle to adapt
to evolving network traffic, needing frequent model updates to
maintain accuracy. Developing schemes that capture network
traffic complexities and reduce update frequency is essential.
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Fig. 3: Proposed image-based CNN intrusion detection scheme through transfer learning for model updates.

Efficient execution of updates, given labeling and computa-
tional challenges, is vital for reliable and cost-effective ML-
based solutions in real-world scenarios.

V. AN IMAGE-BASED INTRUSION DETECTION MODEL FOR
IMPROVED MODEL LIFESPAN AND SYSTEM UPDATES

To tackle the challenge of network traffic behavior changes,
we propose a novel intrusion detection model using a CNN
implemented through transfer learning. Our key insight in the
proposed scheme is that leveraging the CNN can enhance
system reliability over extended periods, improving its lifes-
pan, while transfer learning can be used to facilitate model
updates. As a result, our scheme can reduce the computational
costs associated with model updates and require fewer labeled
training examples of network traffic. The proposed model is
shown in Figure 3, and is composed of two main steps, namely
Image-based Classification and Transfer Learning Update.

The Image-based Classification module aligns with tra-
ditional NIDS settings, wherein network events are classi-
fied as either normal or attack. The classification procedure
commences with the collection of network packets from the
monitored environment. The behavior of the collected event is
then extracted using a flow-based Feature Extraction module,
compounding a flow-based feature set. To increase our model
generalization, our proposed scheme generates a hyperdimen-
sional feature set derived from a flattened output of a Neural
Network’s hidden layer (Fig. 3, xh). Our assumption is that
the expanded feature space representation contributes to an
extended model lifespan and the maintenance of the system
accuracies over time. The resulting feature set is converted
into an image representation format, which serves as input
for the image-based CNN classification. As a result, the
CNN evaluates a higher input dimensionality, increasing its
generalization capabilities, resulting in a better model lifespan.

The Transfer Learning Update module is designed to ad-
dress the evolving behavior of network traffic over time while
easing the model update costs. In this context, our proposal in-
corporates model updates through a transfer learning approach,
wherein both the outdated Neural Network and the CNN model
(Fig. 3, Transfer Learning Update) are employed during model
updates. Our key insight is to utilize the outdated model,
resulting in significant reductions in computational expenses
by leveraging prior knowledge of network data.

The subsequent subsections provide detailed description of
our proposed model’s classification and update procedures.

A. Image-based Classification

Current state-of-the-art classification accuracies are
achieved by applying CNN architectures for the intrusion
detection tasks. This is attributed to the improved CNN’s
ability to depict the training dataset’s characteristics, a
valuable feature for better generalization on network traffic
classification. In light of this, our proposed model leverages
CNNs to perform the network traffic classification. Our main
insight is to use CNNs to increase the system lifespan as time
passes, even if no model updates are conducted. To achieve
such a goal, our proposed Image-based Classification module
is implemented in two phases, as shown in Figure 3.

It considers a streaming of network packets captured from
a given NIC. The behavior of the network packets is ex-
tracted, compounding an associated flow vector x of size n
(Fig. 3, Flow Extraction). Given the flow vector x such that
x = {x1, x2, ..., xn}, our goal is to find the associated label
y. To achieve such a goal, we first apply a neural network
with a hidden layer composed of m neurons, where m > n
(Fig. 3, Neural Network). During training, the neural network
employed is optimized for network traffic classification, ad-
hering to identical training procedures as the CNN. Conse-
quently, the hidden layer outputs non-linear hyperdimensional
features that serve the classification process within a higher-
dimensional space. The resulting vector, denoted as xh such
that xh = {x1, x2, ..., xm} is subsequently reshaped into a
matrix format, ensuring it adheres to squared-sized image
constraints. The matrix is then used as input by our CNN
model, which classifies it as either normal or attack.

Our proposal’s core benefit is harnessing image-based
CNNs to enhance system reliability and lifespan, enabled
by their greater model complexity. We achieve such a goal
twofold. First, we increase the feature dimensionality rep-
resentation by extracting the outputs of a Neural Network’s
hidden layers (Fig. 3, xh). The resulting vector improves
the subsequent CNN generalization capabilities and, thus, its
lifespan. Second, we leverage the resulting hyperdimensional
feature vector to compound an image representation, which
is then used as input by our deployed CNN. As a result,
our proposed scheme can significantly increase the network
flow behavior representation before using it for the CNN
classification task. Given such an approach, our model can
further increase the CNN generalization and lifespan.



B. Transfer Learning Update

Training and updating CNN models pose considerable chal-
lenges in NIDS applications, primarily due to the substantial
need for labeled data, frequently demanding human inter-
vention. As a result, to make model updates more feasible,
techniques must be designed to require fewer computational
resources and less labeled training data. To tackle this chal-
lenge, our proposed scheme adopts a transfer learning ap-
proach for model updates, leveraging the outdated model to
yield two key advantages. Firstly, it reduces computational
costs by utilizing the CNN weights from the outdated model.
Secondly, it minimizes the required training data, thanks to the
prior knowledge embedded in the outdated CNN model with
respect to network traffic.

Our proposed scheme assumes that model updates are
executed periodically by a network operator (Fig. 3, Transfer
Learning Update). At model update time, the Neural Network
is updated considering the outdated model, and is optimized
towards the classification of the newly updated training dataset.
The resulting updated Neural Network is then used to generate
the hyperdimensional space features to update the deployed
CNN. In such a case, the weights of the outdated CNN model
are adjusted based on the newly generated training dataset as
produced by the Neural Network hidden layer outputs. The
resulting updated neural network and CNN is then used in the
production environment.

VI. EVALUATION

The evaluation aims to answer the following RQs:
• (RQ3) How does our proposed image-based CNN scheme

perform when no model updates are performed?
• (RQ4) How does model updates affects our model?
• (RQ5) How does our transfer learning technique improve

model training costs?
The following subsections describe our proposed model

construction and its evaluation.

A. Model Training

The proposed model (Fig. 3) was implemented and as-
sessed using the dataset previously discussed in Section IV-A.
The proposal Neural Network was implemented through a
Multilayer Perceptron (MLP) architecture. The MLP com-
prises an input layer of 60 neurons, a hidden layer with
2, 048 neurons, followed by 2 neurons on the output layer.
At training time the network was trained with 1, 000 epochs,
with a relu activation function and adam optimizer. The MLP
was implemented using scikit-learn API v1.3.1.

In our CNN implementation, we evaluated our scheme using
the GoogLeNet architecture. For both the training and update
procedures, the inputs for the CNN model are derived from
the hidden layer outputs of the MLP (as shown in Fig. 3,
labeled as Neural Network). In this scenario, the MLP hidden
layer output is scaled from a size of 2, 048 to a 48x48
dimension using the PyTorch view function. The CNN was
trained and updated using the adam optimizer, running for
1, 000 training epochs. We utilized categorical cross-entropy
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Fig. 4: Performance of our scheme on MAWIFlow dataset.

as the loss function, with a learning rate of 0.001. The model
was implemented using PyTorch version 1.13.1.

B. Addressing Network Traffic Behavior Changes

The initial experiment, which addresses RQ3, assesses
the performance of our image-based CNN pipeline without
conducting periodic model updates. In practice, we conduct
the same procedure used previously, where we train the model
based on January data and evaluate it without conducting
model updates. Figure 4a shows the classification accuracy of
our model in this context. Our proposed scheme demonstrates
the ability to maintain its classification accuracy over extended
periods, significantly improving the system lifespan when
contrasted with traditional techniques (Fig. 4a vs. Fig. 1).
For instance, our proposed model decreases at most its FN
rate to 27% throughout the evaluated year, while traditional
techniques, such as RF (Fig. 1a), decrease up to 47% its
FP rate. As a result, our proposal based on the extracted
hyperdimensional features used as input to an image-based
CNN can significantly increase the resulting model lifespan.

To address RQ4, we assess the performance of our pro-
posed scheme when conducting monthly model updates. In
this scenario, the MLP and CNN adopt a transfer learning
approach for these updates. Figure 4b illustrates the accuracy
performance of our model when periodic model updates are in-
tegrated. Our proposed scheme maintains consistent accuracy
rates over the entire year while implementing model updates
via a transfer learning scheme. In practice, our model delivered
an average of 5.5% and 1.8% of FP and FN rates respectively.

We further investigate how our proposal can improve the
system’s reliability compared to traditional techniques. Fig-
ure 5a shows the F1 score of our scheme without periodic
model updates vs. traditional techniques. We measure the F1
score as the harmonic mean between precision and recall. It
is possible to note a significant improvement in the accuracy
performance. On average our scheme presented an F1 score of
0.93, an improvement of up to 0.18 and 0.19 compared to the
RF and ExT classifiers respectively (on June). Figure 5b shows
the F1 score as time passes when model updates are conducted.
Similarly, our proposal reached more stable accuracies while
providing high accuracy rates as time passed.
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Fig. 5: Performance comparison on MAWIFlow dataset.

0 2 4 6 8 10 12
Epoch

0.115

0.120

0.125

Va
lid

at
io

n 
Lo

ss

Early Stop

Ours
Traditional

Fig. 6: Model training convergence on March with and without
our proposed transfer learning approach.

To address RQ5, we investigate our scheme’s model up-
date computational costs using our proposed transfer learning
approach. Figure 6 shows the model convergence rate of our
scheme vs. the traditional approach in March. The traditional
approach was measured by training the model from scratch. It
is possible to observe that our scheme significantly improves
model convergence rates, reducing the required number of
training epochs. On average, our model, thanks to the appli-
cation of transfer learning, demanded only 42, 8% of training
epochs for the conduction of model updates compared to the
traditional scheme. As a result, our proposal can significantly
improve the model’s lifespan and accuracy while demanding
less computational costs for model updates.

VII. CONCLUSION

In this paper, we presented a new CNN-based NIDS model
that realistically captures the network traffic behavior in
production environments. This leads to an extended model
lifetime while maintaining system accuracy. In addition, our
proposal uses a transfer learning approach to facilitate model
updating, significantly reducing computational cost. The prac-
tical model applicability is demonstrated through experiments
on a one-year dataset. The proposed model achieves higher
accuracy than traditional techniques while keeping the com-
putational cost of model updates low.

In future work, we aim to extend our proposal to unsuper-
vised identification of new network traffic patterns.
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