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A B S T R A C T

Computational services are progressively migrating to container-based solutions due to their faster provision
time and lower resource allocation overhead. Service providers rely on container multi-tenancy to share
their computing infrastructure and pave their way to profit. Yet, the Quality of Service (QoS) impact due
to container multi-tenancy on deployed services is still widely overlooked in the literature. This paper
proposes a new service provider monitoring model for detecting container multi-tenancy that can lead to
QoS degradation, split into two phases. First, we monitor the container resource usage through the container
engine and the associated process namespace, thus, keeping container isolation. The main assumption is that
the assessment of resource utilization, as measured by the container engine, should be complemented by the
concurrent reporting of resource utilization from the container processes. Second, we detect QoS degradation of
distributed containerized services through a time-series classification approach coped with a feature reduction
technique. The feature reduction selects the prominent performance features from the deployed distributed
service, whereas the time-series classifier ensures the evaluation of the deployed service over time, improving
the system detection accuracy. Thanks to an extensive experimental assessment considering a containerized
distributed Big Data processing platform, we show that container multi-tenancy can affect the processing
performance and the QoS of deployed services. In addition, we show that the proposed model can detect
QoS degradation at the service provider domain with a true-positive rate up to 90%, a false-positive rate of
8%, and an average F1-Score up to 0.94.
1. Introduction

Over the last years, computational services have increasingly relied
on publicly shared computational infrastructures (Arunarani et al.,
2019). Public service providers use virtualized hardware resources
provided through a pay-as-you-go model, where clients only pay for the
hardware they use, leaving idle resources to be allocated to other ten-
ants (Shen and Chen, 2022). The conventional service model performs
the hardware sharing through a hypervisor software, in which Virtual
Machines (VMs) are executed on top of a virtualized abstraction layer of
the physical hardware provisioned to tenants (Arunarani et al., 2019).
As a result, the resource provision task typically introduces significant
allocation overheads, considering that an additional Operating System
(OS) must be instantiated for every newly provisioned VM (Mavridis
and Karatza, 2019).
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407879/2023-4.
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In this context, computational services have been progressively
migrating in recent years to container-based deployments due to their
reduced resource footprint and lower virtualization overheads (Zhang
and Zhou, 2023). Containers are usually executed as an isolated host
OS process, sharing the host libraries and resources (Xavier et al.,
2013). On the one hand, it demands significantly less computational
resources and provision time (Kozhirbayev and Sinnott, 2017). On the
other hand, they are managed by the host OS kernel, which does
not adequately address the resource sharing fairness in a multi-tenant
setting (Truyen et al., 2016).

The traditional VM-based deployment relies on the hypervisor soft-
ware to fairly manage the physical hardware (Zolfaghari et al., 2021).
The hypervisor addresses the hardware provision, concurrent access,
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and sharing, ensuring proper management when several tenants com-
pete for limited hardware resources (Parast et al., 2022). In contrast,
the resource provision task of containers is managed by the OS, which
often addresses the hardware resource sharing as a traditional OS
process (Joy, 2015). For example, Linux-hosted containers are con-
trolled through namespaces and control groups (cgroups), which only
address the container isolation and resource provision (Zeng et al.,
2023). Consequently, containers cannot reasonably address the tenants’
dispute of resources while regulated to the same level of guarantees as
a traditional hypervisor does (Morabito et al., 2015). In practice, multi-
tenancy may significantly affect the QoS of provisioned containerized
services and remains frequently overlooked in the literature. In general,
current solutions, in their vast majority, assume that containers are
subject to the same level of performance degradation experienced in
traditional VM-based service deployments.

Service providers rely on their infrastructure multi-tenancy to pave
their way for profit and reduce costs (Yao et al., 2019). A common
practice even involves the overallocation of virtual resources to tenants
to optimize the utilization of the service provider physical hardware.
This situation can lead to a degradation in service QoS given the
limited physical hardware availability, which can ultimately restrict the
tenants’ complete utilization of their paid virtual hardware. Taking it
into account, hypervisors have been continuously improved to ensure
fair resource sharing between hosted tenants (Kontodimas et al., 2015;
Zhong et al., 2012; Yang et al., 2021). For instance, based on the
tenant’s lack of CPU usage over time, the VMWare CPU scheduler grants
higher priorities to tenants with more CPU shares (Ali et al., 2019).
As a result, even in a shortage of physical hardware resources, the
hypervisor can ensure fair hardware access, decreasing the impact on
the tenant service QoS. In contrast, container engines rely only on the
host’s kernel scheduler, which may defer the container access to the
physical hardware to pave the way for a higher privileged host OS
process (Cinque et al., 2022). Surprisingly, prior works overlook such
a challenge by assuming that the impact of hardware overallocation
in container settings is similar to those experienced in traditional
VM-based deployments (Felter et al., 2015).

In practical terms, identifying a multi-tenant configuration that
may lead to a QoS degradation poses a significant challenge for ser-
vice providers (Fayos-Jordan et al., 2020). The resource utilization
of containerized services exhibits substantial variability and evolves
according to the deployed service. Additionally, isolating containers
from service providers is crucial to address security and data pri-
vacy concerns (Bélair et al., 2019). A situation that leaves designed
QoS degradation detection schemes without empirical evidence of the
current client service performance. Consequently, identifying a multi-
tenant configuration that has the potential to impact the client’s QoS
remains an ongoing challenge for service providers.

Contribution. In this paper, we propose a new monitoring model
for service providers to detect multi-tenant interferences that can im-
pact the client container QoS. The proposal is split into three phases.
First, to maintain the container integrity, we periodically collect the
container resource usage through the container engine and the associ-
ated container namespace. Our primary assumption is that container
QoS degradation can be identified within the service provider domain
by evaluating the resource usage of the container processes and the
associated resource usage provided by the container engine. The main
insight is that the assessment of resource utilization, as measured
by the container engine, should be complemented by the concurrent
reporting of resource utilization from the container processes. Second,
the collected set of features is used as input to a feature reduction
module that selects the most prominent performance features collected
from the client containers. The objective is to evaluate the service
performance even if the client executes a distributed service (e.g., Big
Data processing). Third, the output of the feature reduction module is
used by a time series classifier implemented through a Recurrent Neural
2

Network (RNN) architecture. The rationale of such a technique is m
that the time-series classification can classify performance degradation
while considering the historical container performance.

In summary, the main contributions of this paper are:

• An evaluation of the QoS degradation of distributed containerized
services in a multi-tenant scenario. The performed evaluations,
considering a distributed Big Data processing service as a use-
case, have shown that the performance of container-based ser-
vices is significantly affected in a multi-tenant setting. In detail,
multi-tenancy can increase by up to 84% the processing time of
containerized Apache Spark jobs.

• A monitoring model for service providers aiming the identifica-
tion of multi-tenant configurations that can lead to QoS degrada-
tion in distributed containerized services settings. The proposed
model is executed within the service domain without violating
client isolation. It can detect multi-tenancy interferences to de-
ployed containers with up to 90% of true-positive rates at the
container level and up to 0.88 of F1-Score at the service level.

Roadmap. The structure of this paper is outlined as follows. Sec-
ion 2 provides a detailed description of containers and multi-tenant
nvironments. Section 3 presents a comprehensive review of related
orks on QoS degradation detection. Section 4 assesses the impact of

ontainer multi-tenancy on the QoS of containerized services. Section 5
escribes our proposed model, followed by Section 6, which presents
ts prototype. Our proposed scheme is evaluated in Section 7, and
ection 8 concludes our work.

. Background

This section provides an in-depth description of the microservice or-
hestration, encompassing the virtualization and containerization ser-
ice provision approaches. Furthermore, it introduces the key elements
f Deep Learning (DL) that will be used in our contribution.

.1. Container

Containers have been increasingly used due to their lightweight
haring of physical hardware resources (Henkel et al., 2020). In this
cenario, the client deploys the needed containerized application ser-
ice, sharing the host OS and its libraries with other tenants. The OS
esources are abstracted, while the container is isolated from the host
S and other containers (Casalicchio and Perciballi, 2017). Unlike tra-
itional VM-based approaches, where the hypervisor handles physical
esource access and fair sharing among other tenants, a container relies
n the host OS to manage the resource allocation. On the one hand,
he host OS must ensure the fairness of resource distribution among its
enants, which is generally executed and operated as an isolated host
S process. On the other hand, the host OS kernel controls the isolation
nd resource allocation (Zhong and Buyya, 2020).

In practice, Docker-based containers in Linux OS are managed
hrough namespaces and cgroups (Sultan et al., 2019). The names-
aces handle and isolate the container resources such as Process ID
PID), User IDs, filesystems, and network interfaces. The client can only
ccess their associated namespace’s isolated resources in the container
pace. The cgroups manage and partition the hardware resources
etween the processes by hierarchically organizing them, wherein each
ontainer has a predefined resource allocation limit. Therefore, process
ontainerization can avoid the significant performance overhead on the
ost, unlike the commonly associated performance burden incurred by
raditional VMs-based deployments. Al-Dhuraibi et al. (2018).

Fig. 1 depicts the architectural deployment differences between VMs
nd containerized deployment approaches. In such a case, we illustrate
traditional setting, where VM virtualization is conducted through a

ype 2 hypervisor, which runs on top of a OS. Each VM deployment
emands the instantiation of a new OS, resulting in considerable re-
ource overhead. In contrast, containers are managed as a host OS
rocess, thus not incurring significant resource allocation overheads but
ompeting for the same physical resources without proper hypervisor

anagement.
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Fig. 1. Comparison between VM and container deployment strategies.

.2. Orchestrating microservices

Containers are strongly associated with microservices deployment,
s they ease their provision while ensuring fault-tolerance, elasticity,
nd resource management (Alshuqayran et al., 2016). Microservice
rchitectures are based on Service Oriented Architecture (SOA), which
ecouples the application into loosely-coupled services independently
eployed by a fully automated deployment system (Li et al., 2023).

A microservice-based system comprises single units, each responsi-
le for a single task. For example, a monolithic Web Application can
e loosely decoupled into a front-end, back-end, and a database. The
ommunication between each microservice is then achieved through an
pplication Programming Interface (API). In contrast to a traditional
onolithic approach, those services are usually implemented by lever-

ging containers (Section 2.1), which brings a lightweight feature for
eployed applications (Kang et al., 2016).

As the number of components increases, similar to the traditional
loud computing approach, it is important to guarantee efficient main-
ainability and flexibility. In such a case, Kubernetes, also known as
8s, can be used as an open-source container orchestration service

o deploy, maintain, and scale containerized applications (Vayghan
t al., 2018). Fig. 2 illustrates the Kubernetes architecture, based on the
aster-worker paradigm (Chen et al., 2018), in which each node is re-

ponsible for creating a Pod (Zhang et al., 2021). The main Kubernetes
omponents are described as follows:

• Container Engine. Daemon used to manage and control the
container deployment, e.g. Docker.

• Container. Isolated process that encapsulates the service applica-
tion code as a OS process. The container engine instantiates the
process according to a predefined image.

• Pod. Set of containers running on a cluster, the smallest Ku-
bernetes logical resource. Pods are used to deploy containerized
services on a Kubernetes architecture.

• API Server. Core Kubernetes component. It provides an API for
end-users to communicate with the tool components, such as
deployed Pods, and DaemonSets.

• Kube Scheduler. It schedules the deployment of Pods to a Ku-
bernetes node following previously defined rules.

• Controller Manager. Manages the shared state of the cluster pro-
vided by the API Server. It has several controllers, such as Node,
Job, and Namespace. Those components supervise the received
requests from each Kubernetes object and update the system state
accordingly.

• etcd. A distributed key–value data store used to coordinate and
share resources and configuration data between the system com-
ponents.

• CNI Network Plugins. Container Network Interface (CNI) plug-
ins that implement virtual network interfaces for container com-
munication. They are responsible for allocating IP addresses to
3

pods and exposing them to other nodes within the cluster.
Fig. 2. Kubernetes architecture.

2.3. Deep learning

Over the past years, DL techniques have been increasingly and
largely used for classification tasks (Zhu et al., 2017). To accomplish
this task, the DL model is built via a computationally intensive training
process. The objective of the training task is to derive a behavioral DL
model from a comprehensive dataset comprising a significant number
of input samples of all evaluated classes. The samples are represented
by a feature vector that captures the event behavior under the given
problem scenario. Further, the acquired model is evaluated using a test
dataset that assesses the expected classification accuracy rates of the
deployed model in production environments.

DL techniques can be implemented through several architectures,
with each configuration tailored for a specific application (Zhou et al.,
2019). In this work, we focus on two main DL-based strategies, namely
Deep AutoEncoder (Harush et al., 2021) and RNN (Spooren et al.,
2019). Deep AutoEncoders have been typically used for dimensionality
reduction and image denoising through a two-step process named
encoder and decoder. The encoder ’s goal is to compress the deep neural
network input by learning a set of representative feature relations.
In contrast, the decoder aims to decompress the encoder output. As a
result, the Deep AutoEncoder output is a learned representation of the
most representative relations between its input features. In contrast,
RNN architectures employ loops to enable pattern recognition tasks that
consider information from previous inputs, thereby facilitating time-
series classification. The RNN stores input values based on a specified
time interval and is commonly used for classifying temporal series or
scenarios influenced by historical inputs.

3. Related work

Identifying service QoS degradation in multi-tenant environments
poses challenges that have been addressed through diverse mecha-
nisms in recent literature. As an example, in a conventional VM-based
scenario, Mi et al. (2011) introduced a technique for pinpointing the
underlying cause of performance degradation by analyzing the response
latency of client application requests. While their proposed scheme suc-
cessfully detects performance degradation in deployed cloud services,
it lacks explicit identification of the responsible node, either the client
or the service provider. Shea et al. (2014) compared the service perfor-
mance between private and public clouds based on average resource
usage over time. They demonstrate that public clouds can experience
unstable performance due to more service clients and intensive resource
utilization by other tenants. The authors did not attempt to detect
performance-degraded VMs or investigate the underlying causes of
performance degradation.

Studies on multi-tenancy interferences that can lead to QoS degra-
dation in the literature are still in the early stages. Ruan et al. (2016)
examined the performance variation in containerized applications run-
ning on VMs in comparison to applications directly deployed on a
bare-metal infrastructure. By surveying different hardware metrics,
including CPU usage, memory bandwidth, disk I/O performance, and
network latency, the authors demonstrated that bare-metal deployed
applications exhibit better performance with lower hardware usage.
However, the authors did not use a classification technique for de-

tecting multi-tenancy interference. In Wang et al. (2018a), W. Wang
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Table 1
Workload profiles executed in our testbed (Fig. 3, Tenant Pod).

Workload Description Profile Workload configuration Node resource
commitment
ratio (𝛼)

httperf A docker container running a HTTP benchmark that
continuously performs HTTP requests to a predefined website

Low ≈20% of network link 0.20
Average ≈50% of network link 0.50
High ≈100% of network link 1.00

sysbench A Docker container running a CPU benchmark that computes
prime numbers

Low ≈1 CPU core 0.25
Average ≈2 CPU cores 0.50
High ≈4 CPU cores 1.00

HiBench
(Huang et al., 2022)
(RandomForest)

A set of Docker containers (1 master, 3 workers) running an
Apache Spark job that builds an ensemble of decision trees
on a given input dataset randomly generated

Low ≈20% of node CPU cores 0.20
Average ≈50% of node CPU cores 0.50
High ≈100% of node CPU cores 1.00

HiBench
(Huang et al., 2022)
(Terasort)

A set of Docker containers (1 master, 3 workers) running an
Apache Spark job that performs input sorting according to a
standard benchmark

Low ≈20% of node CPU cores 0.20
Average ≈50% of node CPU cores 0.50
High ≈100% of node CPU cores 1.00
et al. presented a technique for identifying cloud performance, wherein
multiple benchmarks were used to map each cloud performance profile.
The authors evaluated service deployment suitability across multiple
cloud providers and simultaneously identified performance degrada-
tion using their proposed scheme, which involved periodic benchmark
executions. However, it introduces a significant trade-off in hardware
resource usage as time passes.

Vicentini et al. (2018) proposed an Machine Learning (ML)-based
model to detect hardware resource over-commitment in traditional VM-
based clouds, with a specific focus on multi-tenancy interferences in
VM environments. The authors reported significant QoS degradation
of monitored applications even in a VM-based deployment. Another
technique was proposed by Grohmann et al. (2019), which measures
key performance indicators provided by the application, including CPU
usage and memory when compared to resource usage reported by
the cloud providers through the application of five shallow classifiers
and one DL classifier. The authors identified performance degradation
with high accuracy while assuming that public cloud providers enable
the collection of their underlying hardware usage. Masouros et al.
(2021) proposed a RNN technique for the prediction of performance
degradation of container-based cloud providers under interference con-
ditions. The authors considered collecting low-level system metrics
(e.g., instructions per cycle and last-level cache misses) as input for
their proposed scheme. To represent an interfering tenant, the au-
thors executed resource-specific benchmarks. Further, they identified
performance interference with high accuracies when assuming the
availability of public cloud providers’ low-level system metrics.

Apart from DL-based techniques, Wang et al. (2018b) proposed a
self-adaptive cloud monitoring technique based on correlation analy-
sis coped with a feature reduction technique to predict performance
degradation. On the one hand, correlation analysis was used to reduce
the monitoring overhead when selecting the most significant features
to represent a system fault. On the other hand, the feature reduction
generates eigenvectors representing the metrics’ principal components
using cosine similarity between two eigenvectors to detect if the QoS
is being affected. The authors induced a performance degradation sce-
nario considering CPU, disk, memory, and network. Their proposal can
identify performance degradation with feature engineering techniques.
However, the authors do not consider labeling the node where the
interference is generated. Another monitoring scheme was proposed
by El-Kassabi et al. (2019). The proposed approach identified perfor-
mance degradation by computing a trust score based on system metrics.
The authors addressed a container orchestration environment in the
cloud provider domain, while none of ML techniques are considered.

4. Problem statement

This section analyzes the QoS impact of multi-tenancy on con-
4

tainerized applications. We deployed a Big Data processing architecture
Fig. 3. Client Pods with Apache Spark jobs are deployed in a containerized envi-
ronment, exposing them to multi-tenancy interferences resulting from the concurrent
execution of Tenant Pods workloads (Table 1).

in a distributed and containerized manner by leveraging Kubernetes.
Specifically, we introduce the deployed testbed and investigate the
performance issues experienced by container resource sharing in a
controlled multi-tenant environment.

4.1. Testbed

To realistically assess the QoS impact of multi-tenancy on con-
tainerized applications, we examine a typical processing demanding
distributed application executed as a set of containers. Specifically,
we consider a distributed Big Data processing application wherein
the operator deploys the job as a set of distributed containers ex-
ecuted on a multi-tenant container orchestration environment. Such
a situation is common nowadays due to the widespread adoption of
container-based solutions given their isolation with minimal perfor-
mance overhead (Tang et al., 2022; Ahmed et al., 2020). In addition,
container orchestration such as Kubernetes (see Fig. 2) is widely used
to share physical infrastructure with multiple tenants in a container
environment (Ceesay et al., 2017; Cañete et al., 2024).

The testbed is depicted in Fig. 3, we consider a client that ex-
ecutes its Big Data processing task as a container-based solution in
a distributed manner. During this process, the workers deployed by
the client experience performance degradation due to resource sharing
enforced by a service provider leveraging container multi-tenancy.

The distributed environment is deployed through Kubernetes 1.27
and Docker 24.0.2. Kubernetes is used as a container orchestration
framework representing the service provider in our testbed, while
Docker is used as the container engine at each node (see Fig. 2).
The testbed comprises 4 physical machines, with 3 machines serving
as Kubernetes workers and 1 machine functioning as the Kubernetes
master. Each node is equipped with an 8-core Intel i7 CPU, 16GB
of memory, interconnected through a gigabit network, running an
Ubuntu OS 20.04. For the client application, we adopt a containerized
distributed Apache Spark 3.4.1 integrated with a Hadoop Distributed
File System (HDFS) 3.3.5. The client pod consists of 1 Apache Spark
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master container, 1 HDFS NameNode container, and 3 worker contain-
ers that function as both Apache Spark workers and HDFS DataNodes.
Each worker container is configured to leverage 2 CPU cores through
the Docker limit configuration. The application container is deployed
through a Kubernetes Pod, ensuring consistent execution across each
evaluation round.

We evaluate two Apache Spark jobs related to ML in our testbed,
considering them as a use case for the client pod (Fig. 3, Client Pod), as
described below:

• HiBench (Huang et al., 2022) Random Forest (RF) Job: Dis-
tributed containerized Apache Spark job that builds an ensemble
of decision trees on a given input dataset randomly generated.
The job was implemented in four steps as follows: (i) a dataset,
with 7.7 GB and 1,000 columns, is randomly generated and stored
in HDFS, (ii) the stored dataset is loaded to a Spark RDD, (iii) a
RF classifier with 100 decision trees is trained, and (iv) the built
classifier is evaluated in a test dataset;

• HiBench (Huang et al., 2022) Support Vector Machine (SVM)
Job: Distributed containerized Apache Spark job that builds an
SVM model on a given input dataset randomly generated. The
job was implemented in four steps as follows: (i) a dataset, with
6.7 GB and 10,000 columns, is randomly generated and stored in
HDFS, (ii) the stored dataset is loaded to a Spark RDD, (iii) a SVM
classifier is trained, and (iv) the built classifier is evaluated in a
test dataset;

To reproduce a real use-case scenario with a multi-tenant configu-
ation that can potentially result in QoS degradation, we concurrently
eploy a varying number of additional Kubernetes Pods during each
xecution of the client Pod (Fig. 3, Tenant Pod). More specifically,

we consider four tenant pod workloads, namely httperf, sysbench, Hi-
Bench (RandomForest) and HiBench (TeraSort), as described in Table 1.
Each tenant pod workload varies the configuration of the generated
workload, thereby increasing or decreasing resource usage accordingly
(Table 1, Workload Configuration). During the testbed execution, the
umber of deployed tenants in the tenant Kubernetes Pod varies,
reating, on purpose, a controlled multi-tenancy interference setting for
valuation.

Each testbed execution round procedure is executed as follows:

(1) Tenant Pod Building. A tenant pod configuration profile is estab-
lished to generate a concurrent workload that induces a potential
multi-tenant inference (Table 1). To achieve this goal, a random
selection of workloads and associated profiles is chosen (ranging
0 to 10 workloads, at Low, Average, or High configuration).

(2) Tenant Pod Submission. The tenant pod, randomly defined, is
sent to the Kubernetes Master for deployment on the Kubernetes
Nodes.

(3) Client Pod Submission. The client pod is submitted to the Kuber-
netes Master.

For each execution round, we compute the cluster level of multi-
enant interference based on the deployed concurrent workloads. Each
eployed workload has an associated node resource commitment ratio
ased on the average usage of resources (Table 1, Node Resource Com-
itment Ratio). The node resource commitment ratio was determined
mpirically by averaging the measured resource usage required by each
orkload across multiple execution rounds of the testbed. As a result,

he cluster commitment ratio is computed according to the following
quation:

𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 =

∑𝑁
𝑖=0

∑𝑀
𝑗=0 𝛼𝑗

𝑁
, (1)

where 𝑁 denotes the number of Kubernetes nodes, 𝑀 the number of
workloads 𝑗 deployed on a node 𝑖, and 𝛼 the node resource commitment
atio for the workload execution (Table 1, Node Resource Commitment
5

Fig. 4. Performance impact on a distributed containerized Apache Spark job in a
multi-tenancy interference setting.

Ratio). Our assumption is that the node resource commitment can be
measured based on the average workload configurations deployed, as
shown in Table 1. Recalling that we vary the workload configuration
at every testbed deployment, as shown in Fig. 3. Therefore, considering
the network and CPU allocation, it serves as a measure of node resource
utilization. Indeed, the cluster commitment can then be computed by
aggregating the average resource commitment of each node in the
cluster.

The testbed was executed for a total of 200 execution rounds,
herein 100 rounds accounted for the monitoring of the HiBench (Huang
t al., 2022) RF Job, and 100 remaining rounds accounted for the mon-
toring of the HiBench (Huang et al., 2022) SVM Job. Both monitored

jobs were executed with the same tenant pod configuration profile in
our testbed, allowing a proper performance degradation evaluation.

4.2. Assessing the QoS impact due to multi-tenancy in containerized dis-
tributed applications

The conducted experiments aimed to address the following research
questions (RQ):

• (RQ1) How does multi-tenancy affect the QoS as measured by pro-
cessing time of containerized services?

• (RQ2) Does the impact of multi-tenancy vary based on the type of job
application?

The first experiment focuses on addressing RQ1 by evaluating the
job processing time of the containerized Apache Spark job when ex-
ecuted in a multi-tenant environment. To achieve this objective (as
described in Section 4.1), we execute the selected jobs while systemat-
ically varying the number of concurrently deployed containers running
the workload configuration outlined in Table 1. We use the benchmark
container to generate the multi-tenancy interference setting in our
testbed that can potentially result in a QoS degradation (see Fig. 3).
Specifically, the cluster can either be free of multi-tenant interferences
or under a varying impact of multi-tenant workloads. In particular, we
evaluate the client QoS in terms of the processing time of the deployed
jobs.

Fig. 4 shows the distribution of job processing times of the evaluated
Apache Spark jobs for our deployed testbed. Indeed, we observe a
significant increase in job processing time when the client application
is exposed to multi-tenant interferences. For example, in a dedicated
cluster without concurrent workloads, approximately 80% of SVM job
executions are completed within 770 s. However, in a multi-tenant clus-
ter, the same job requires 1150 s on average, resulting in a 49% increase
n processing time. Therefore, the container engine demonstrates an
nability to effectively manage the sharing of physical resources among
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Fig. 5. Performance impact distribution of a distributed containerized Apache Spark
job according to the cluster resource commitment.

tenants, even when hardware resources are available. Multi-tenancy
interference substantially impacts the QoS of containerized services as
measured by their processing time.

To answer RQ2, we conduct a detailed analysis of the distribution
f the processing impact of the selected jobs concerning the cluster
esource commitment ratio. To this aim, we assess the resulting cluster
ommitment (as defined in Eq. (1)) concerning the job execution time.
he objective is to evaluate the impact of cluster resource commitment

n a multi-tenant scenario on the processing time of the containerized
pache Spark job.

Fig. 5 shows the distribution in job processing time for each selected
ob according to the level of cluster commitment. The performance
mpact varies depending on the cluster commitment ratio and the
pecific job being executed. For example, at a cluster commitment ratio
f 1.0, the average job processing time is increased by 16% for the RF

job and 84% for the SVM job. The discrepancy in performance impact
can be attributed to the resource-bound nature of the selected Apache
Spark jobs. In particular, the RF job exhibits a CPU-bound behavior,
as each decision tree is built in a distributed manner. In contrast, the
SVM job relies on CPU resources and network utilization to optimize
the weights of the support vectors throughout the execution rounds.
Regardless of the specific characteristics of the deployed service, multi-
tenancy interference can significantly impact the QoS, here measured
by the processing performance of containerized applications.

4.3. Discussion

In this section, we discuss the multi-tenancy impact on container-
ized services’ performance. The experimental campaign has demon-
strated that multi-tenancy interferences significantly influence the pro-
cessing performance of deployed containerized services, with a par-
ticular focus on a Big Data processing framework as the application
use case. Moreover, existing approaches in the literature for detect-
ing multi-tenant QoS degradation (as discussed in Section 3) com-
monly assume a traditional VM-based deployment, where the hyper-
visor software plays a crucial role in facilitating the monitoring pro-
cess. In contrast, detecting performance degradation caused by multi-
tenancy in containerized services presents a notable challenge for ser-
vice providers. This is because the designed detection approaches must
operate without breaching client isolation, meaning they cannot access
the applications running within the client’s domain. Consequently,
the service provider cannot determine when a higher level of multi-
tenancy might impact the QoS of its tenants. This phenomenon forces
service providers to either unintentionally degrade the QoS of their
clients or reduce their profits by accommodating fewer tenants on
6

their available hardware infrastructure. Hence, service providers must
Fig. 6. Proposed model for detecting multi-tenant interference in distributed
containerized services within the service domain.

adopt QoS degradation detection approaches designed explicitly for
container environments, ensuring that client isolation is preserved
when conducting such a task.

5. Detection of QoS degradation on container-based services

To tackle the challenge of QoS degradation due to the multi-tenancy
interferences, we introduce a novel model that operates within the
service provider domain while strictly adhering to client isolation
constraints. The proposed approach aims to empower service providers
by identifying tenants where the existing multi-tenancy configuration
might impact the QoS of deployed containers, all while respecting client
isolation and without necessitating access to the running applications.

To this aim, the proposed scheme focuses on a distributed con-
tainerized service deployed in a multi-tenant environment, such as a
containerized Apache Spark application running on Kubernetes. The
application service is executed within a containerized tenant, provided
and managed by the service provider. The service provider can access
the resource utilization of the container as a traditional OS process
but cannot access the container’s internal components, such as the
running service APIs and the performance of the containerized OS. The
proposed scheme consists of two primary phases, namely the Metric
Collector and the Container Monitor, as depicted in Fig. 6.

The goal of the Metric Collector is to continuously gather metrics
n the deployed container and its associated processes. Our proposal
perates on the assumption that container performance degradation
an be identified by analyzing container resource usage and the run-
ing processes associated with it. Our key insight is to monitor the
ontainer’s resource utilization, as provided by the container engine,
nd track the associated container process tree through the container
amespace. As a result, the service provider can effectively monitor
eployed containers while maintaining the integrity of client isolation.

The objective of the Container Monitor is to consolidate the metrics
btained from the deployed containers, as collected by the Metric Col-
ector module. This module assesses whether the deployed distributed
ervice encounters performance issues caused by multi-tenancy inter-
erences that can be attributed to the service provider. It assesses
he QoS of the provider tenants at both container and service gran-
larity. On the one hand, the container QoS is evaluated based on
he metrics associated with the container itself and its corresponding
et of processes. On the other hand, the service QoS is assessed by
nalyzing the metrics collected from all containers associated with the
valuated service. To achieve this goal, our proposed scheme employs a
ime-series classification approach for the monitoring task. Indeed, we
valuate the QoS of deployed containers within the service provider
omain by considering the container-related metrics obtained from the
ontainer engine and the associated processes retrieved from the host
S namespace. Doing so allows us to assess the container QoS without
ompromising the client isolation.

The subsequent subsections provide a detailed description of our
roposed model, delineating the various modules that constitute its
mplementation.
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5.1. Metric collector

Monitoring the QoS of containerized services in multi-tenant en-
vironments poses a significant challenge for service providers. This
challenge arises primarily from the inability to access the client’s
deployed service, which typically operates within an isolated container
and follows a loosely decoupled component architecture based on the
principles of microservices. The service provider can only access the
metrics provided by the container engine and the running processes
of the container through the host OS namespace. To overcome this
limitation, our proposal entails continuously collecting metrics from
the Container Engine and the Container Namespace. Our main assump-
tion is that QoS degradation resulting from the current multi-tenancy
configuration will manifest as adverse effects on the container process
metrics, while the metrics associated with the container engine will
indicate high resource usage. For example, this could manifest as low
network usage in a specific container process, as measured by the
Container Namespace, alongside high CPU utilization, as measured by
the Container Engine.

The operation of the Metric Collector module is depicted in Fig. 6,
and it is executed at regular intervals on every service provider node,
e.g., every 5 s. In this scenario, the monitor module collects two distinct
sets of metrics: Engine and Namespace. The Engine metrics provide
information about the container’s resource usage, as measured by the
container engine, such as CPU utilization measured by the container
engine (e.g., Docker) On the other hand, the Namespace metrics encom-
ass the complete container process tree along with the associated PID
esource utilization, such as the network utilization for each process
xecuted within the container. The extracted set of metrics serves a
ual purpose. Firstly, it is used as input to the Container State Classifier,
hich detects QoS degradation at the container level (as depicted in
ig. 6). Secondly, the metrics are forwarded to the Service State Classifier
odule, where they are used to classify the level of service degradation

n a distributed manner.
As a result, the Metric Collector module can provide pertinent met-

ics to help in the detection of the container’s current QoS. It is
orth noticing that this is accomplished without compromising client

solation, as the metrics are collected based on the host OS namespace
ree and the employed container engine. The subsequent subsection
lucidates how the collected metrics are adopted for QoS monitoring.

.2. Container monitor

Our proposed model considers that container multi-tenancy can lead
o QoS degradation at both the container and service levels. The prior
ocus is on detecting the performance of a specific client container,
s this can have a cascading effect on the overall performance of the
istributed client service. The latter assessment focuses on evaluating
he performance of the client service in relation to the QoS degra-
ation observed across multiple client containers. This is particularly
elevant in scenarios with a distributed operating environment, such
s microservice architectures. Fig. 7 depicts the operational flow of
ur proposed Container Monitor module. It is split into two detection
pproaches, namely Container State Classifier and Service State Classifier.
7

Algorithm 1 Consolidate Feature Extraction
Require:

Service 𝑆 ⊳ Monitored containerized service
Number of Process 𝑘 ⊳ Number of process to filter
Resource for Filter 𝑟 ⊳ Resource to use for filter
procedure FeatureExtraction(𝑠, 𝑀 , 𝑟)

 ← ∅
for 𝑐𝑜𝑛𝑡𝑖 ∈ 𝑆 do

𝐶𝐹𝑖 ← 𝑔𝑒𝑡𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝐸𝑛𝑔𝑖𝑛𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑠(𝑐𝑜𝑛𝑡𝑖)
𝑡𝑟𝑒𝑒𝑖 ← 𝑔𝑒𝑡𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑁𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒𝑇 𝑟𝑒𝑒(𝑐𝑜𝑛𝑡𝑖)
𝑃𝐹𝑖 = argtop k

𝑝 ∈ 𝑡𝑟𝑒𝑒𝑖
𝑔𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑝)

𝑋 ← 𝑋 + {𝐶𝐹𝑖, 𝑃𝐹𝑖}
end for
𝑟𝑒𝑡𝑢𝑟𝑛 

end procedure

The operation of our proposed monitor initiates with the metric
collection as conducted by the Metric Collector (see Fig. 7). In the case
of deploying a distributed service 𝑆 using 𝑁 containers, the Metric
Collector module extracts two subsets of features, namely the Engine and
Namespace feature sets, for each container 𝑐𝑜𝑛𝑡𝑖. The Engine feature set,
denoted as 𝐶𝐹 , encompasses the metrics associated with the container
as provided by the container engine (Fig. 7, 𝐶𝐹 ). Conversely, the
Namespace feature set, denoted as 𝑃𝐹 , holds the metrics associated with
he entire container process namespace 𝑡𝑟𝑒𝑒 (Fig. 7, 𝑃𝐹 ). In this regard,
or each process 𝑝 within container 𝑐𝑜𝑛𝑡𝑖, there exists a corresponding
𝐹 feature set that describes the process’s resource usage.

Since the number of processes can vary depending on the running
ontainer service, the Container Monitor module ranks and filters the
rocesses based on a pre-defined metric related to resource usage,
esulting in a set of 𝑘 selected processes. For example, the module may
elect the top 5 container processes with the highest CPU usage over
given time period. The process ranking criteria should be defined

ased on the operator’s specific requirements. For example, CPU-bound
ervices can be ranked based on CPU utilization, while network-bound
ervices should be ranked based on network usage. The objective is to
dentify the processes associated with the deployed container service
ithout requiring access to the isolated container space. Consequently,
ach container 𝑐𝑜𝑛𝑡𝑖 is associated with a Engine feature set 𝐶𝐹 and

a set of 𝑘 Namespace feature sets 𝑃𝐹 . The resulting feature set 
serves two purposes: (i) identifying container QoS degradation, and (ii)
identifying service QoS degradation, as illustrated in Fig. 7 (Container
State Classifier and Service State Classifier).

The feature extraction process is outlined in Algorithm 1. The input
to Algorithm 1 consists of a containerized service 𝑆 to be monitored,
a resource 𝑟 that is used for ranking the container processes, and a
number 𝑘 for process filtering. For every container 𝑐𝑜𝑛𝑡𝑖 associated with
the service 𝑆, the algorithm extracts the Engine feature set 𝐶𝐹𝑖. The
Namespace metrics are extracted for every process from the container
𝑐𝑜𝑛𝑡𝑖. Furthermore, it is filtered based on the specified resource 𝑟,

which, if ranked as the top 𝑘 resource usage process, it is added to
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Fig. 8. Prototype architecture of our proposed model.
the vector 𝑃𝐹𝑖. The resulting tuple 𝐶𝐹𝑖 and 𝑃𝐹𝑖 are then added to the
service feature vector  , i.e., the algorithm output.

5.2.1. Container state classifier
The Container State Classifier uses the resulting feature set  as input

to a RNN model for the identification of the Node State (Fig. 7, Container
State Classifier). The module determines the current configuration of
the service provider node, classifying it as either normal or multi-tenant
interference. The normal state refers to a container state where the
service provider’s current multi-tenant configuration does not impact
the QoS of the deployed containers. In other words, it represents a
container environment without any performance interference caused
by multi-tenancy. In contrast, the multi-tenant interference state refers
to a scenario in which the current multi-tenant configuration is indeed
affecting the performance of the running container service, thereby
impacting the QoS of the service provider’s clients.

Given a RNN model 𝑓 (𝑥) ∶ 𝑥 → 𝑦 that outputs the Node State 𝑦
on given a container feature set 𝑥, such that 𝑥 ∈ R. The goal of the
module is to apply the model on the input 𝑥 to find the Node State
𝑦. Our proposed scheme defines the detection of the Node State as a
time-series classification task. This approach is justified by the fact that
container resource usage can vary over time, either due to the behavior
of the deployed service or the occurrence of multi-tenant interferences.
By treating it as a time-series task, the module can capture and analyze
these changes over time, thereby improving the system’s accuracy.

5.2.2. Service state classifier
The objective of the Service State Classifier module is to assess the

containerized service QoS. Similarly to the Container State Classifier, the
module receives as input the extracted feature set  from the monitored
containerized service 𝑆 (Fig. 7, Service State). In this case, the goal
of the Service State detection module is to identify service-level QoS
degradation based on the metrics extracted from all service containers.
However, this task can be challenging due to the variable number of
deployed containers and their diverse performance characteristics.

Further, the module uses a feature reduction technique to address
such a shortcoming. The main goal is to capture the correlation among
the extracted features from all service containers in a distributed man-
ner. This correlation representation enables the module to effectively
utilize the feature set as input for the RNN model. The flow of the
Service State Classifier module is shown in Fig. 7. It assesses the ser-
vice state by leveraging the consolidated extracted features from all
associated containers (Alg. 1). The module employs a feature reduction
technique to establish correlations among the input features within a
reduced feature space. Furthermore, this reduced feature space is fed
into the RNN model, which generates the output for the Service State.
Similarly, the Service State represents the service state as either normal
or multi-tenant interference.
8

6. Prototype

Our proposed scheme is implemented, deployed, and evaluated on
the testbed previously described in this paper (see Section 4). Fig. 8
shows the used APIs and the deployed architecture. We remark that we
deployed a Kubernetes cluster on 4 physical machines. Out of these, 3
machines are configured as Kubernetes Nodes responsible for container
deployment, while the remaining machine serves as the Kubernetes
Master.

The Metric Collector module (see Section 5.1) is implemented on
top of the Kubernetes Nodes. The Engine metrics are collected through
the Docker Engine API. The Namespace metrics are collected through
the PSUtil API 5.7.2. The proposed prototype evaluates the host OS
namespace and applies a filtering process to identify and analyze the
container-related processes at each monitoring interval. For evaluation
purposes, we collect the metrics of the containers at regular intervals
of every 5 s. A total of 37 features are collected for the Engine Monitor
metrics, and 20 metrics for each container process by the Namespace
Monitor, resulting in a total of 57 metrics as described in Table 2.

The Container Monitor module, as described in Section 5.2, is
executed at intervals of 5 s. In this case, the module receives the
collected features from the Container Monitor module through a REST
web service implemented in Python 3.11. We filter the top 5 most
CPU-demanding container processes for our evaluation based on CPU
resource utilization (Algorithm 1, Resource for Filter). The resulting
features are used by both the Container State Classifier and Service State
Classifier modules (see Fig. 7). The first module employs an RNN model
to identify the Node State. Conversely, the second module applies the
feature reduction technique before using it for classification purposes
(see Section 5.2).

We implement our Feature Reduction module (Fig. 7, Feature Re-
duction) through a Deep AutoEncoder architecture, executed on top of
Keras API 2.4.0, and TensorFlow API 2.4.1. The Feature Reduction deep
autoencoder is implemented with the following architecture:

• Input. The input is composed of 20 features for each container
process. Each container is represented by the top 5 most CPU-
demanding processes, resulting in 100 Namespace features. These
features are combined with 37 Engine features, for a total of 137
features. The total features are combined for all 3 service-related
containers, resulting in an input size of 411. This input of 411
features is adopted as input to the Deep AutoEncoder (Fig. 7,
Service State).

• Encoder. Three dense layers were implemented with a 𝑟𝑒𝑙𝑢 activa-
tion function, with 512, 256, and 128 units, respectively.

• Encoder Output. An encoder output layer is implemented with a
sigmoid activation function and 20 units.

• Decoder. Three layers with a 𝑟𝑒𝑙𝑢 activation function, with 128,
256, and 512 units respectively.

• Decoder Output. An output layer with 411 units and a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
activation function.
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Table 2
Extracted features by the containerized monitoring module in a 5-s time interval periodicity.
Feature set Device # Extracted features Description

Container Engine
(Docker API)

CPU

1 Context Switches Number of context switches made
2 Idle CPU time spent idling
3 Interrupts Number of interrupts made
4 Soft Interrupts Number of soft interrupts made
5 I/O Wait Number of jiffies spent waiting for I/O completion
6 SoftIRQ Number of software interrupts made
7 System Time spent by the kernel
8 User Time spent by the user

Disk

9 In Flight Number of I/O requests in flight
10 I/O Ticks Time active
11 Read I/O Number of read requests processed
12 Read Merge Number of merged I/O read requests with in-queue I/O
13 Read Sectors Number of sectors read
14 Read Ticks Total time spent in read requests
15 Write I/O Number of write requests processed
16 Write Merge Number of merged I/O write requests with in-queue I/O
17 Write Sectors Number of sectors written
18 Write Ticks Total time spent in write requests
19 Time In Queue Total wait time for all requests

Memory

20 Active Pages Number of active pages
21 Active File Number of active file cache memory
22 Inactive Pages Number of inactive pages
23 Inactive Number of inactive file cache memory
24 Mapped Total amount of KB mapped
25 Page Faults Number of page faults
26 Major Page Faults Number of major page faults
27 Page In Number of KB the system had paged from disk
28 Page Out Number of KB the system had paged to disk
29 Page Reuse Number of KB the system reused pages
30 Page Free Number of KB the system free memory

Network

31 Recv. Bytes Number of bytes received to the host
32 Sent Bytes Number of bytes sent from the host
33 Recv. Packets Number of packets received to the host
34 Sent Packets Number of packets sent from the host
35 Num. Connections Number of connections active
36 Drop In Number of incoming packets dropped
37 Drop Out Number of outgoing packets dropped

Container Namespace
(PSUtil)

CPU

38 Children System Process’ children time spent in kernel
39 Children User Process’ children time spent in the user space
40 System Time spent by the kernel
41 User Time spent by the user

Disk

42 Read Chars Total read chars from the disk
43 Read Bytes Total read bytes from the disk
44 Read Count Total read operations made
45 Written Chars Total written chars from the disk
46 Written Chars Total written bytes from the disk
47 Written Chars Total write operations made

Memory

48 Data Amount of memory committed to the executable code
49 Size Total program size
50 Resident Resident set size
51 Shared Number of resident shared pages

Network

52 Recv. Bytes Number of bytes received to the process
53 Sent Bytes Number of bytes sent from the process
54 Recv. Packets Number of packets received to the process
55 Sent Packets Number of packets sent from the process
56 Drop In Number of incoming packets dropped
57 Drop Out Number of outgoing packets dropped
The implemented Deep AutoEncoder architecture used the 𝑟𝑚𝑠𝑒
formula as 𝑙𝑜𝑠𝑠 using 𝑎𝑑𝑎𝑚 optimizer with 0,0001 as the learning rate.
For the model building procedure, 1,000 epochs are executed with a
batch size of 512. Also, the architecture considered an early stopping
approach with the patience of 10 epochs, monitoring the validation
𝑙𝑜𝑠𝑠.

The Container State Classifier and Service State Classifier modules
(Fig. 7) rely on a RNN as implemented through a Long Short-Term
Memory (LSTM). The model is implemented through the following
9

architecture: L
• Input. The 20 features generated by the Encoder layer are fed
as an input to the LSTM (Encoder Output layer of the Deep
AutoEncoder)

• LSTM. Two LSTM layers with 1,024 and 512 units respectively
• Two 𝑑𝑒𝑛𝑠𝑒 layers are implemented with a 𝑟𝑒𝑙𝑢 activation function,

with 512, and 256 units respectively
• Output. A 𝑑𝑒𝑛𝑠𝑒 layer is implemented with the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation

function, with 2 units

The Container State Classifier module also uses the aforementioned
STM architecture. However, it receives as input 137 feature values



Journal of Network and Computer Applications 224 (2024) 103839P. Horchulhack et al.

e
S

c
r
a

7

Q
a

e

7

i
o
w
c
P
c
v
e
p
c
e
a
S
w
a

i
e
t
S
i
f
t
i

P
f

generated by each individual monitored container for the classification
task, as it does not make use of our Feature Reduction module, consid-
ring that it is implemented within each deployed container (Container
tate Classifier, Fig. 7).

The implemented LSTM architecture used the sparse categorical
rossentropy as 𝑙𝑜𝑠𝑠 using 𝑎𝑑𝑎𝑚 optimizer with 0,0001 as the learning
ate. For the model building procedure, 1,000 epochs are executed with
batch size of 512.

. Evaluation

This section evaluates the proposed model for the detection of
oS degradation on containers caused by multi-tenant interference by
ddressing four main research questions:

• (RQ3) Can the proposed container state classifier effectively detect
multi-tenant interferences at the container level?

• (RQ4) Can the proposed service state classifier accurately detect
multi-tenant interferences at the service level?

• (RQ5) What is the impact of the multi-tenant interference ratio on the
classification accuracy of our proposed technique?

• (RQ6) What is the performance of our proposed model when the
multi-tenancy interference ratio is varied over time?

The following subsections outline the construction of the used mod-
ls in the evaluation and describe their performance in the testbed.

.1. Model building

The performance of the proposed model, as depicted in Fig. 6,
s evaluated using the testbed described before (see Section 4.1). In
rder to evaluate the performance, we executed the deployed testbed
hile varying the deployed Apache Spark job and the number of con-

urrently deployed processing load tenants (Fig. 3, Kubernetes Tenant
od Container). Similarly, we collected 300 measurements for each
onfiguration, while the implemented prototype fetch the used feature
alues from deployed tenants. Each testbed execution is labeled as
ither normal or multi-tenant interference according to the underlying
hysical hardware usage (see Section 4.1). Indeed, we label the events
ollected from a job execution as multi-tenant interference when its
xecution time surpasses the time observed at the fourth quartile in
cluster commitment ratio at 0.0 (Fig. 5, 375 and 950 s for the RF and
VM jobs respectively). Further, we consider multi-tenant interference
hen the job execution time significantly surpasses those observed in
multi-tenant-free setting.

The collected data are split into three main datasets, namely train-
ng, validation, and testing, each composed of 40%, 30%, and 30% of the
xecution rounds in each configuration. The training dataset is used for
he model building of the Container State, Feature Reduction, and Service
tate modules (see Fig. 6). We also applied a robust feature scaling
mplemented by scikit-learn to standardize the data in a −1 to +1 range
or the proposed architecture. The validation dataset is used to evaluate
he model generalization during the training task. The testing dataset
s used to report the final model accuracies.

Finally, the proposed model is evaluated with respect to its True-
ositive (TP), True-Negative (TN), and F1 scores by considering the
ollowing classification performance metrics:

• True-Positive (TP): rate of service degradation samples correctly
classified as service degradation.

• True-Positive (TN): rate of normal samples correctly classified as
normal.

• False-Positive (FP): rate of normal samples incorrectly classified as
service degradation.

• False-Negative (FN): rate of service degradation samples incorrectly
classified as normal.
10
Fig. 9. ROC curve of our proposed Container State Classifier module for detecting QoS
degradation at the container level.

Fig. 10. ROC curve in a container granularity of our proposed Container State Classifier
module for detecting multi-tenancy interference.

The F1 score is computed as the harmonic mean of precision and
recall values while considering multi-tenant interference as positive sam-
ples and normal as negative samples, as shown in Eq. (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

7.2. Detecting multi-tenant interferences

The first experiment addresses RQ3 and evaluates the classifica-
tion accuracy of our proposed Container State Classifier module for
detecting multi-tenancy interferences. To achieve this goal, we build
the Container State Classifier module using the previously described
LSTM architecture. It is important to note that the module is applied
independently to each deployed container and does not utilize the
Feature Reduction technique (see Fig. 7).

Fig. 9 shows the Receiver Operating Characteristic (ROC) curve for
detecting multi-tenancy interferences for each executed Apache Spark
job and monitored container in our evaluation. The results indicate
that our proposed model achieved high detection accuracies across
different Apache Spark jobs and monitored containers. Our proposed
scheme demonstrated high performance in detecting multi-tenancy
interferences for both the RF and SVM jobs. Specifically, the Area Under
the Curve (AUC) value for the RF job was measured to be 0.95, while
the average AUC for the SVM job was 0.83, indicating a noticeable
difference of 0.12 between the two. As observed in the previous eval-
uation (see Section 4.2), the variations in accuracy can be attributed

to the distinct characteristics and behaviors of the evaluated jobs. Each
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Fig. 11. ROC curve of our proposed Service State Classifier module for detecting
ulti-tenancy interference at the service level.

Table 3
Proposed model accuracies according to each evaluated job on
a service-related granularity.
Apache Spark Evaluation metric

job TP TN AUC F-Measure

RF 0.84 0.89 0.90 0.90
SVM 0.87 0.59 0.82 0.78

job has different resource requirements and workload patterns, leading
to variations in performance degradation and, consequently, different
detection accuracies. Fig. 10 further investigates the AUC values for
each container job. The measured AUC values for each container vary
based on the deployed job, with the RF job achieving an average AUC
value of 0.96, while the SVM job ranges from 0.72 to 0.87 (Fig. 10(a)
𝑣𝑠.10(b)).

Our proposed model achieves high accuracy performance across
different containers, as evidenced by the consistently high AUC scores
obtained for each evaluated job. Further, investigating the generated
ROC curve shows that our model can improve detection accuracy when
a higher False-Positive (FP) rate is tolerated. For instance, one can pro-
vide a 90% of TP rate for the RF job if a 5% of FP is tolerated (Fig. 9(a)).
Indeed, adjusting the trade-off between detection sensitivity and FP rate
is beneficial for service providers, especially in performance-critical
scenarios. By setting a higher FP rate, the provider can detect potential
multi-tenancy interferences more effectively, ensuring timely actions
to maintain service quality. Such a threshold can be used in critical
services, wherein performance degradation cannot be tolerated. The
proposed model effectively detects container-level multi-tenancy inter-
ferences, providing indications for countermeasures, such as migrating
the client container to a different host, to avoid QoS degradation.

The second experiment aims to answer RQ4 and evaluates our
proposed Service State Classifier module for detecting service-level per-
ormance degradation due to multi-tenant interferences. To achieve this
oal, we evaluate the detection accuracy of the Service State Classifier

module, when implemented using an LSTM model. Thus, it utilizes the
data from the Feature Reduction module, implemented using a Deep

utoEncoder. Recalling that the model input is generated by the three
eployed containers to detect service-level performance degradation.

Fig. 11 shows the ROC curve for our Service State Classifier module.
ur proposed scheme provided similar accuracies when compared

o the container-level counterpart (Fig. 9 vs. Fig. 11). Our model
chieved AUC values of 0.90 and 0.82 for the RF and SVM jobs,
espectively, indicating its effectiveness in detecting service-level per-
ormance degradation. The Feature Reduction module selects the most
eaningful metrics from the distributed containers, ensuring that only

elevant data is used for the classification task.
Table 3 summarizes the obtained accuracy for the evaluated Apache
11

park jobs, demonstrating the high detection accuracies achieved by d
Fig. 12. Proposed model detection performance of cluster performance issues according
to degradation level.

our proposed model at the service-level scenarios. Further investigation
of the ROC curve (Fig. 11) reveals that our model can achieve a high
TP rate of up to 80% while maintaining low FP rates of only 7% and
3% for the RF and SVM jobs, respectively. This demonstrates the
ffectiveness of our model in detecting service-level degradation due
o multi-tenant interferences.

To answer RQ5, we further investigate the relationship between the
luster resource commitment ratio and the accuracy of our model in
etecting QoS degradation under different levels of interference. Fig. 12
hows the F-Measure obtained by our Service State Classifier module
ccording to the cluster commitment intervals. In summary, we observe
hat as the level of cluster commitment increases, leading to more
evere QoS degradation, the accuracy of our proposal also improves.
owever, the classification accuracies are noticeably affected when the
ulti-tenant interference ratio is close to the chosen operation point.

or instance, the F-Measure increases from 0.57 to 0.83 when there
s a cluster commitment ranging from 0.375 to 0.75 during the SVM
ob execution (Fig. 12(b)). It is important to note that the choice of
he operation point may vary depending on the specific characteristics
f the deployed containerized service and its sensitivity to multi-tenant
nterferences from the service provider. As a consequence, our proposed
odel demonstrates increased accuracy as the service QoS experiences
ore severe degradation.

To answer RQ6, we conducted an experimental campaign to eval-
ate the performance of our proposed model under a realistic setting,
here the multi-tenancy interference level changes over time during

he execution of the client containerized service. This dynamic alloca-
ion and reallocation of tenants over the same physical hardware, as
ime passes, is a common scenario in real-world deployments. To assess
he performance of our proposed model under varying multi-tenancy
nterference levels, we conducted an experiment in which we executed
ur testbed for a duration of 24 minutes. During this time, we varied
he number of concurrently executed workloads (Table 1), simulating
ifferent levels of multi-tenancy interference.

Fig. 13 depicts the classification accuracy of our Service State Clas-
ifier module over time, with measurements taken every minute. The
esults prove that our proposed scheme achieves high classification
ccuracies when deployed in a realistic setting that simulates real-time
pplications. Indeed, we obtained an average F1-Score of 0.88 for the
F job and 0.72 for the SVM job, indicating its effectiveness in detecting
ulti-tenancy interferences within the service provider domain. The

lassification accuracy is high, independent of the interference level
high or low). This latter reinforces the capability of our model to adapt
o different interference scenarios and accurately detect performance

egradation in containerized services.



Journal of Network and Computer Applications 224 (2024) 103839P. Horchulhack et al.
Fig. 13. Proposed model detection performance of service performance issues while
service provider varies the degradation level. Accuracy is measured in one-minute time
intervals.

8. Conclusion

Container-based deployments have gained popularity in recent
years due to their advantages in terms of fast provisioning and low-
performance overhead. However, container-based services often do
not consider the multi-tenancy aspects that have been recognized as
impacting the performance of traditional VM-based services. In our
contribution, we conducted experiments demonstrating that container-
ized services experience significant performance degradation when
deployed in multi-tenant environments, significantly impacting the QoS
of deployed services. Further, we focused on tackling the detection
of multi-tenancy interferences in containerized distributed services
within the service provider domain, enabling service providers to
effectively utilize multi-tenancy while ensuring that it does not com-
promise the QoS experienced by their clients. Our proposed scheme
leverages the metrics the container engine provides and the container-
associated namespace. By analyzing these metrics, our scheme enables
the detection of both container-level and service-level performance
degradation. This comprehensive approach allows service providers
to identify and address multi-tenancy interferences at different levels.
Consequently, when performance degradation is detected, appropriate
countermeasures can be taken, such as migrating affected containers to
less overloaded service provider nodes.
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